Answer:
change waterslide according to question. and you are good to go. check photo for solve
Answer:
Mechanical Advantage = Output Force/Input Force
Velocity Ratio = Driving Gear/Driven Gear
Explanation:
Answer:
The correct option is A = 1960 N/m²
Explanation:
Given that,
Mass m= 20,000kg
Area A = 100m²
Pressure different between top and bottom
Assume the plane has reached a cruising altitude and is not changing elevation. Then sum the forces in the vertical direction is given as
∑Fy = Wp + FL = 0
where
Wp = is the weight of the plane, and
FL is the lift pushing up on the plane.
Let solve for FL since the mass of the plane is given:
Wp + FL = 0
FL = -Wp
FL = -mg
FL = -20,000× -9.81
FL = 196,200N
FL should be positive since it is opposing the weight of the plane.
Let Equate FL to the pressure differential multiplied by the area of the wings:
FL = (Pb −Pt)⋅A
where Pb and Pt are the static pressures on bottom and top of the wings, respectively
FL = ∆P • A
∆P = FL/A
∆P = 196,200 / 100
∆P = 1962 N/m²
∆P ≈ 1960 N/m²
The pressure difference between the top and bottom surface of each wing when the airplane is in flight at a constant altitude is approximately 1960 N/m². Option A is correct
Answer:
B. 1 m/s
Explanation:
Metric unit conversions:
0.3 km = 300m
5 minutes = 5*60 = 300 seconds
So if a seal can reach a depth of 300m in a time of 300 seconds, its diving speed is the distance divided by time duration
v = s/t = 300/300 = 1m/s
So B is the correct answer