Given that the coordinates of the point A is (2,7) and the coordinates of the point B is (6,3)
We need to determine the midpoint of A and B
Midpoint of A and B:
The midpoint of A and B can be determined using the formula,
Substituting the points (2,7) and (6,3) in the above formula, we get;
Adding the numerator, we have;
Dividing the terms, we get;
Thus, the midpoint of the points A and B is (4,5)
Message me if you need anything else I’ll be happy to help.
Answer:A
Step-by-step explanation:
She is taxed at a rate of 2.9%, so each year she is taxed 213000 * 2.9% . calculating this, we find that every year, she must pay 6177 in taxes. However, we need the amount in a month, so we divide by 12, to get 6177/12= 514.75, or A
Answer:
i. 9
ii. 14
iii. 405
iv. 
Step-by-step explanation:
The number of diagonals in a polygon of n sides can be determined by:

where n is the number of its sides.
i. For a hexagon which has 6 sides,
number of diagonals = 
= 
= 9
The number of diagonals in a hexagon is 9.
ii. For a heptagon which has 7 sides,
number of diagonals = 
= 
= 14
The number of diagonals in a heptagon is 14.
iii. For a 30-gon;
number of diagonals = 
= 
= 405
The number of diagonals in a 30-gon is 405.
iv. For a n-gon,
number of diagonals = 
The number of diagonals in a n-gon is 
<span>The part of the graph that best represents the solution set to the system of inequalities y ≤ x + 1 and y + x ≤ –1 is Part C.</span>