Explanation:
The states may differ depending on the reactions
Answer:
The degree of dissociation of acetic acid is 0.08448.
The pH of the solution is 3.72.
Explanation:
The 
The value of the dissociation constant = 
![pK_a=-\log[K_a]](https://tex.z-dn.net/?f=pK_a%3D-%5Clog%5BK_a%5D)

Initial concentration of the acetic acid = [HAc] =c = 0.00225
Degree of dissociation = α

Initially
c
At equilibrium ;
(c-cα) cα cα
The expression of dissociation constant is given as:
![K_a=\frac{[H^+][Ac^-]}{[HAc]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BAc%5E-%5D%7D%7B%5BHAc%5D%7D)



Solving for α:
α = 0.08448
The degree of dissociation of acetic acid is 0.08448.
![[H^+]=c\alpha = 0.00225M\times 0.08448=0.0001901 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%20%3D%200.00225M%5Ctimes%200.08448%3D0.0001901%20M)
The pH of the solution ;
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![=-\log[0.0001901 M]=3.72](https://tex.z-dn.net/?f=%3D-%5Clog%5B0.0001901%20M%5D%3D3.72)
Answer:
A directory of relatives' phone numbers
Hope this helps
Explanation:
Answer: The law of corresponding states is an empirical law according to which the equations of states for real gases are similar when these gases are expressed in reduced temperature, pressures, and volumes at critical point.