Explanation:
Alkenes react in the cold with pure liquid bromine, or with a solution of bromine in an organic solvent like tetrachloromethane. The double bond breaks, and a bromine atom becomes attached to each carbon. The bromine loses its original red-brown color to give a colorless liquid. In the case of the reaction with ethene, 1,2-dibromoethane is formed.
Materials are transferred between individual cells and their internal environment through the cell membrane by diffusion, osmosis, and active transport. During diffusion and osmosis, molecules move from a higher concentration to a lower concentration. Osmosis: Osmosis is the movement of solvent particles across a semipermeable membrane from a dilute solution into a concentrated solution. Diffusion: Diffusion is the movement of particles from an area of higher concentration to lower concentration. This would be the diffusion.
It refers to the ways scientists explore and study the world based on observations and their works/ evidence.
If 0.400 moles CO and 0.400 moles O2 completely react, 17.604 grams of CO2 would be produced.
First, let us look at the balanced equation of reaction:

According to the equation, the mole ratio of CO and O2 is 2:1. But in reality, the mole ratio supplied is 1:1. Thus, CO is the limiting reactant while O2 is in excess.
Also from the equation, the ratio of CO consumed to that of CO2 produced is 1:1. Thus, 0.400 moles of CO2 would also be produced from 0.400 moles of CO.
Recall that: mole = mass/molar mass
Therefore, the mass in grams of CO2 that would be produced from 0.400 moles can be calculated as:
Mass = mole x molar mass
= 0.400 x 44.01
= 17.604 grams
More on calculating mass from number of moles can be found here: brainly.com/question/12513822
Answer:
0.37atm
Explanation:
Given parameters:
Initial pressure = 0.25atm
Initial temperature = 0°C = 273K
Final temperature = 125°C = 125 + 273 = 398K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we use a derivative of the combined gas law;
=
P and T are pressure and temperature
1 and 2 are initial and final values
=
P2 = 0.37atm