It might be CO2 but I’m not sure since I haven’t learned this since 5th grade
Answer:
A river delta is a landform created by deposition of sediment that is carried by a river as the flow leaves its mouth and enters slower-moving or stagnant water. This occurs where a river enters an ocean, sea, estuary, lake, reservoir, or another river that cannot carry away the supplied sediment.
plz follow me
Answer:
1.74 m/s
Explanation:
From the question, we are given that the mass of the an object, m1= 2.7 kilogram(kg) and the mass of the can,m(can) is 0.72 Kilogram (kg). The velocity of the mass of an object(m1) , V1 is 1.1 metre per seconds(m/s) and the velocity of the mass of can[m(can)], V(can) is unknown- this is what we are to find.
Therefore, using the formula below, we can calculate the speed of the can, V(can);
===> Mass of object,m1 × velocity of object, V1 = mass of the can[m(can)] × velocity is of the can[V(can)].----------------------------------------------------(1).
Since the question says the collision was elastic, we use the formula below
Slotting in the given values into the equation (1) above, we have;
1/2×M1×V^2(initial velocity of the first object) + 1/2 ×M(can)×V^2(final velocy of the first object)= 1/2 × M1 × V^2 m( initial velocity of the first object).
Therefore, final velocity of the can= 2M1V1/M1+M2.
==> 2×2.7×1.1/ 2.7 + 0.72.
The velocity of the can after collision = 1.74 m/s
f' = frequency observed by the police car after sound reflected from the vehicle and comes back to police car = 1250 Hz
f = frequency emitted by the police car = 1200 Hz
V = speed of sound = 340 m/s
v = speed of vehicle = ?
frequency observed by the police car is given as
f' = f (V + v)/(V - v)
inserting the values in the above equation
1250 = 1200 (340 + v)/(340 - v)
v = 6.9 m/s