Answer:
The correct option is
(e)either (c) or (d) could be correct.
Explanation:
The electric field of a charge radiates out in all directions and the intensity of the electric field strength given by E = F/q₀, diminishes as the lines of force moves further away from the source. The direction of F and E is in the line of potential motion of the source charge in the field.
Equipotential surfaces are locations in the radiated electric that have the same field strength or electric potential. The work done in moving within an equipotential surface is zero and as such since
Work = Force × distance = 0 where distance ≠ 0.
The force acting between two points on an equipotential surface is also zero or the component of the force within an equipotential surface is zero and since there is a force in the electric field, it is acting at right angles to the equipotential surface which could be horizontally to the left or right directions where the equipotential surfaces due to the charge distribution are in the vertical plane.
Therefore it is either horizontally to the left, or horizontally to the right.
Answer:
See a tractor is more slow but has a greater force and a car is fast but has a slower force
Explanation:
so your answer is Tractors have more force then cars
Answer:
<h2>5850 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 750 × 7.8
We have the final answer as
<h3>5850 N</h3>
Hope this helps you
Answer:
270 m/s²
Explanation:
Given:
α = 150 rad/s²
ω = 12.0 rad/s
r = 1.30 m
Find:
a
The acceleration will have two components: a radial component and a tangential component.
The tangential component is:
at = αr
at = (150 rad/s²)(1.30 m)
at = 195 m/s²
The radial component is:
ar = v² / r
ar = ω² r
ar = (12.0 rad/s)² (1.30 m)
ar = 187.2 m/s²
So the magnitude of the total acceleration is:
a² = at² + ar²
a² = (195 m/s²)² + (187.2 m/s²)²
a = 270 m/s²