1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kipish [7]
3 years ago
10

Find the slope of the line going through the points (0,6) and (-3,9)

Mathematics
1 answer:
andre [41]3 years ago
7 0

Answer:

The slope of the line is 5.

The point slope form of the line is y=5x+6.

Step-by-step explanation:

We can find the slope using this formula: \frac{y_{2} }{x_{2} } -\frac{y_{1} }{x_{1} }

\frac{6}{0} -\frac{9}{-3} =

\frac{6}{0} -(-\frac{9}{3} )=

\frac{6}{0} +\frac{9}{3} =

\frac{15}{3} =

5

The slope of the line is 5.

To find point slope form, we use the equation y=mx+b where m is the slope and b is the y-intercept.

The y-intercept of this slope is 6 and the slope is 5 so we get, y=5x+6

You might be interested in
Factor completely 5x^2 + 20x
murzikaleks [220]

Answer: 5x(x + 4)

hope i helped

7 0
2 years ago
Read 2 more answers
1. A point at (3, 2) is rotated 180° clockwise about the origin.
luda_lava [24]
1.) (-3,-2)
2.) 8.4m^3
3.) 37.7m^3
6 0
2 years ago
Help help area and perimeter
natita [175]

Answer:

Perimeter= 49

area= 360

Step-by-step explanation:

perimeter means you need to add 40+9 and area means you must multiple the numbers.

4 0
2 years ago
A survey was conducted to determine the amount of time, on average, during a given week SCAD students spend outside of class on
fiasKO [112]

Answer:

Standard Deviation = 5.928

Step-by-step explanation:

a) Data:

Days  Hours spent  (Mean - Hour)²

1              5                61.356

2             7                34.024

3            11                  3.360

4           14                   1.362

5           18               26.698

6          22               84.034

6 days 77 hours,    210.834

mean

77/6 = 12.833    and 210.83/6 =  35.139

Therefore, the square root of 35.139 = 5.928

b) The standard deviation of 5.928 shows how the hours students spend outside of class on class work varies from the mean of the total hours they spend outside of class on class work.

5 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Other questions:
  • I NEED HELP FAST ON THIS PROBLEM!!!!! Idk what the answer is!!
    11·1 answer
  • The distance from Barcelona, Spain, to Paris, France, is 650 miles. If the train from Barcelona to Paris travels 130 miles per h
    15·2 answers
  • The equation $1.50p + $5.00 = $14.00 shows the total cost of picking p pounds of blueberries at a local blueberry farm. How many
    5·1 answer
  • Need help fast with this question fourty points and branliest!!
    7·2 answers
  • Which table represents a linear function?
    12·1 answer
  • What is 6 more than -3 in integers​
    14·2 answers
  • if you’re standing on the street 1,300 feet from the bottom of the building, you have to look up at a 23 degree angle to see the
    10·1 answer
  • PLS ANSWER ASAP NEED HELP
    5·1 answer
  • When do we say information is valuable?​
    12·1 answer
  • Maya's penny bank is 3/4 full. After she removes 280 pennies, it is 1/2 full. How many pennies can Maya's bank hold?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!