1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Morgarella [4.7K]
4 years ago
9

Suppose that a basketball player can score on a particular shot with probability .3. Use the central limit theorem to find the a

pproximate distribution of S, the number of successes out of 25 independent shots. Find the approximate probabilities that S is less than or equal to 5, 7, 9, and 11 and compare these to the exact probabilities.

Mathematics
1 answer:
Rom4ik [11]4 years ago
6 0

Answer:

(a) The probability that the number of successes is at most 5 is 0.1379.

(b) The probability that the number of successes is at most 5 is 0.1379.

(c) The probability that the number of successes is at most 5 is 0.1379.

(d) The probability that the number of successes is at most 11 is 0.9357.

→ All the exact probabilities are more than the approximated probability.

Step-by-step explanation:

Let <em>S</em> = a basketball player scores a shot.

The probability that a basketball player scores a shot is, P (S) = <em>p</em> = 0.30.

The number of sample selected is, <em>n</em> = 25.

The random variable S\sim Bin(25,0.30)

According to the central limit theorem if the sample taken from an unknown population is large then the sampling distribution of the sample proportion (\hat p) follows a normal distribution.

The mean of the the sampling distribution of the sample proportion is: E(\hat p)=p=0.30

The standard deviation of the the sampling distribution of the sample proportion is:

SD(\hat p)=\sqrt{\frac{ p(1- p)}{n} }=\sqrt{\frac{ 0.30(1-0.30)}{25} }=0.092

(a)

Compute the probability that the number of successes is at most 5 as follows:

The probability of 5 successes is: p=\frac{5}{25} =0.20

P(\hat p\leq 0.20)=P(\frac{\hat p-E(\hat p)}{SD(\hat p)}\leq  \frac{0.20-0.30}{0.092} )\\=P(Z\leq -1.087)\\=1-P(Z

**Use the standard normal table for probability.

Thus, the probability that the number of successes is at most 5 is 0.1379.

The exact probability that the number of successes is at most 5 is:

P(S\leq 5)={25\choose 5}(0.30)^{5}91-0.30)^{25-5}=0.1935

The exact probability is more than the approximated probability.

(b)

Compute the probability that the number of successes is at most 7 as follows:

The probability of 5 successes is: p=\frac{7}{25} =0.28

P(\hat p\leq 0.28)=P(\frac{\hat p-E(\hat p)}{SD(\hat p)}\leq  \frac{0.28-0.30}{0.092} )\\=P(Z\leq -0.2174)\\=1-P(Z

**Use the standard normal table for probability.

Thus, the probability that the number of successes is at most 7 is 0.4129.

The exact probability that the number of successes is at most 7 is:

P(S\leq 57)={25\choose 7}(0.30)^{7}91-0.30)^{25-7}=0.5118

The exact probability is more than the approximated probability.

(c)

Compute the probability that the number of successes is at most 9 as follows:

The probability of 5 successes is: p=\frac{9}{25} =0.36

P(\hat p\leq 0.36)=P(\frac{\hat p-E(\hat p)}{SD(\hat p)}\leq  \frac{0.36-0.30}{0.092} )\\=P(Z\leq 0.6522)\\=0.7422

**Use the standard normal table for probability.

Thus, the probability that the number of successes is at most 9 is 0.7422.

The exact probability that the number of successes is at most 9 is:

P(S\leq 9)={25\choose 9}(0.30)^{9}91-0.30)^{25-9}=0.8106

The exact probability is more than the approximated probability.

(d)

Compute the probability that the number of successes is at most 11 as follows:

The probability of 5 successes is: p=\frac{11}{25} =0.44

P(\hat p\leq 0.44)=P(\frac{\hat p-E(\hat p)}{SD(\hat p)}\leq  \frac{0.44-0.30}{0.092} )\\=P(Z\leq 1.522)\\=0.9357

**Use the standard normal table for probability.

Thus, the probability that the number of successes is at most 11 is 0.9357.

The exact probability that the number of successes is at most 11 is:

P(S\leq 11)={25\choose 11}(0.30)^{11}91-0.30)^{25-11}=0.9558

The exact probability is more than the approximated probability.

You might be interested in
Where would 2015 be on a mod 7 clock
oksian1 [2.3K]
6, I believe is the answer
6 0
4 years ago
Find BC if B(8, -7) and C(-4, -2).
polet [3.4K]
4, -8

add the x's and add the y's
4 0
4 years ago
What is the value of X?<br> Intersecting Chords (Lengths)
quester [9]

Answer:

x = 4

Step-by-step explanation:

(8)(7) = 14x

14x = 56

x = 4

3 0
3 years ago
1,Justin rides his bicycle 2.5 kilometers to school. Luke walks 1,950 meters to school.How much farther does Justin ride to scho
kirill [66]
1. A. 550 meters.
this is because 2.5 km = 2500 meters, since there are 1000 meters in one kilometer.
therefore, 2500 - 1950 = 550 meters.
2. B. 126 inches.
this is because there are 12 inches in one foot, so we multiply 12 by 10 since there are 10 full feet. this leaves us with 120. then, we add half a foot, which is 6 inches. therefore, it is 126 :)
6 0
3 years ago
For which system of equations is (2, 2) a solution?
Eva8 [605]
Answer D.

Insert (2, 2) in for x and y in the equations.

2(2)+ 3(2) = ?
? = 10
4(2) + 5(2) = ?
? = 18
8 0
4 years ago
Other questions:
  • If f(x) = 9x+1, find f^-1 (f(3))
    9·1 answer
  • 15mi/1hr=ft/sec how do sovle this????
    5·1 answer
  • If <img src="https://tex.z-dn.net/?f=A%20%3D%20log_%7B5%7D2" id="TexFormula1" title="A = log_{5}2" alt="A = log_{5}2" align="abs
    15·1 answer
  • Each car on a comuter train can seat 114 pessengers. If the train has 7 cars,how many pessengers can the train Seat
    10·2 answers
  • Write a real world situation that could be modelled by the equation 100-6x=160-10x
    14·1 answer
  • If 12^-x=5, what does 12^2x equal
    10·1 answer
  • Find the perimeter of Triangle ABC.
    10·1 answer
  • Help me please anyone
    9·2 answers
  • A baker needs to arrange 487 cookies on plates.
    10·1 answer
  • HELP PLEASE
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!