Answer:
160 kg
12 m/s
Explanation:
= Mass of first car = 120 kg
= Mass of second car
= Initial Velocity of first car = 14 m/s
= Initial Velocity of second car = 0 m/s
= Final Velocity of first car = -2 m/s
= Final Velocity of second car
For perfectly elastic collision

Applying in the next equation


Mass of second car = 160 kg
Velocity of second car = 12 m/s
<h2>Right answer: Comets have very elliptical orbits that usually take them far beyond the orbit of Pluto, but also take them closer to the Sun than Earth</h2>
Comets are celestial bodies constituted by ice, dust and rocks that orbit around the Sun, after having been altered by the Oort cloud; following different trajectories that can be <u>highly eccentric elliptical</u><u> </u>(periodic trajectories), parabolic or hyperbolic.
One of the main characteristics of a comet is that it travels quite fast, on its way around the Sun and has a long tail. It should be noted that the tails of comets always go in the opposite direction to the Sun (due to the radiation pressure of sunlight).
Therefore, the correct option is C.
Water vapor and carbon dioxide
According to Newton's second law of motion, the acceleration of a body is directly proportional to the force acting on the body and inversely proportional to its mass. The formula for this law is
F=ma
=4000kg * 2m/s 2 =8000N