Answer:
the net force is acting upon the object. The net force is the vector sum of all the forces that act upon an object. That is to say, the net force is the sum of all the forces, taking into account the fact that a force is a vector and two forces of equal magnitude. Hope this helps you.
Answer:
600 KPa.
Explanation:
From the question given above, the following data were obtained:
Initial volume (V1) = 0.075 m³
Final volume (V2) = 0.45 m³
Final pressure (P2) = 100 KPa
Initial pressure (P1) =?
Temperature = constant
The initial pressure can be obtained by using the Boyle's law equation as shown below:
P1V1 = P2V2
P1 × 0.075 = 100 × 0.45
P1 × 0.075 = 45
Divide both side by 0.075
P1 = 45 / 0.075
P1 = 600 KPa.
Thus, the initial pressure in the balloon is 600 KPa.
D. The graduated cylinder is used to find the volume, and triple beam balance is used to find the mass.
Answer:
x = 11.23 m
Explanation:
For this interesting exercise, we must use angular kinematics, linear kinematics and the relationship between angular and linear quantities.
Let's reduce to SI system units
θ = 155 rev (2pi rad / rev) = 310π rad
α = 2.00rev / s2 (2pi rad / 1 rev) = 4π rad / s²
Let's look for the angular velocity at the time the piece is released, with starting from rest the initial angular velocity is zero (wo = 0)
w² = w₀² + 2 α θ
w =√ 2 α θ
w = √(2 4pi 310pi)
w = 156.45 rad / s
The relationship between angular and linear velocity
v = w r
v = 156.45 0.175
v = 27.38 m / s
In this part we have the linear speed and the height that it travels to reach the floor, so with the projectile launch equations we can find the time it takes to arrive
y =
t - ½ g t²
As it leaves the highest point its speed is horizontal
y = 0 - ½ g t²
t = √ (-2y / g)
t = √ (-2 (-0.820) /9.8)
t = 0.41 s
With this time we calculate the horizontal distance, because the constant horizontal speed
x = vox t
x = 27.38 0.41
x = 11.23 m