Answer: it will take 9 hours to empty the pool.
Step-by-step explanation:
The pool is shaped like a rectangular prism with length 30 feet, wide 18 ft, and depth 4ft. It means that when the pool is full, its volume is
30 × 18 × 4 = 2160 ft³
If water is pumped out of the pool at a rate of 216ft3 per hour, then the rate at which the water in the pool is decreasing is in arithmetic progression. The formula for determining the nth term of an arithmetic sequence is expressed as
Tn = a + d(n - 1)
Where
a represents the first term of the sequence(initial amount of water in the pool when completely full).
d represents the common difference(rate at which it is being pumped out)
n represents the number of terms(hours) in the sequence.
From the information given,
a = 2160 degrees
d = - 216 ft3
Tn = 0(the final volume would be zero)
We want to determine the number of terms(hours) for which Tn would be zero. Therefore,
0 = 2160 - 216 (n - 1)
2160 = 216(n - 1) = 216n + 216
216n = 2160 - 216
216n = 1944
n = 1944/216
n = 9
Answer:
its B
Step-by-step explanation:
Hi!
We know that Mr. Abraham’s wife is 6 years younger than him, which is 36-6, which means his wife is 30 years old.
We also know that Mr A’s son is 24 years younger than his wife, which is 30-24, which is 6.
As of right now, we now know that:
Mr. A is 36
Mr. A’s wife is 30
Mr. A’s son is 6
It’s asking for the ratio of Him:Wife:Son, so 36:30:6.
BUT, it’s asking for simplest form, so divide each of those numbers by 6.
Your answer is: 6:5:1
Answer:
Step-by-step explanation:
Each successive year, he
earned a 5% raise. It means that the salary is increasing in geometric progression. The formula for determining the nth term of a geometric progression is expressed as
Tn = ar^(n - 1)
Where
a represents the first term of the sequence(amount earned in the first year).
r represents the common ratio.
n represents the number of terms(years).
From the information given,
a = $32,000
r = 1 + 5/100 = 1.05
n = 20 years
The amount earned in his 20th year, T20 is
T20 = 32000 × 1.05^(20 - 1)
T20 = 32000 × 1.05^(19)
T20 = $80862.4
To determine the his total
earnings over the 20-year period, we would apply the formula for determining the sum of n terms, Sn of a geometric sequence which is expressed as
Sn = (ar^n - 1)/(r - 1)
Therefore, the sum of the first 20 terms, S20 is
S20 = (32000 × 1.05^(20) - 1)/1.05 - 1
S20 = (32000 × 1.653)/0.05
S20 = $1057920
Answer:
13.9%
Step-by-step explanation:
0.139 x 100=13.9, can you give me brainiest if its correct