Given what we know, we can confirm that the tensional force of a system can in theory be changed without diminishing its force through the use of an ideal pulley.
<h3>What is an ideal pulley?</h3>
- A pulley is a small wheel through which a string or chain is run.
- These are used in order to change the direction of a force.
- An ideal pulley would be one in which there is no friction and the pulley itself would have no mass.
- Therefore, the force would be able to change directions without giving part of its force to the pulley system.
Therefore, we can confirm that the only known way to change the direction of a force without diminishing its value would be through the use of a frictionless and massless pulley system otherwise known as an ideal pulley.
To learn more about Friction visit:
brainly.com/question/13357196?referrer=searchResults
It takes more work to use a meat grinder
<span>Metamorphic rock undergoes weathering, erosion; the particles are deposited and undergo lithification.</span>
Answer:
138.3 days
Explanation:
Given that a Planet Ayanna has a radius of 6.2 X 10%m and orbits the star named Dayli in 98 days. A new neighboring planet Clayton J-21 has been discovered and has a radius of 7.8 X 10 meters.
The period of time for Clayton J-21 to orbit Dayli can be calculated by using Kepler law.
T^2 is proportional to r^3
That is,
T^2/r^3 = constant
98^2 / 62^3 = T^2 / 78^3
Make T^2 the subject of formula.
T^2 = 98^2 / 62^3 × 78^3
T^2 = 19123.2
T = sqrt ( 19123.2 )
T = 138.2867 days
Therefore, the period of time for Clayton J-21 to orbit Dayli is 138.3 days approximately.
Answer:
353225
Explanation:8uhhhhhhhhhlkgg