1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ghella [55]
3 years ago
15

Express the measurement 0.00000575 into scientific notation.

Physics
1 answer:
g100num [7]3 years ago
7 0

Answer: = 5.75 × 10 -6

Explanation:

= 5.75 × 10-6

(scientific notation)

= 5.75e-6

(scientific e notation)

= 5.75 × 10-6

(engineering notation)

(millionth; prefix micro- (u))

= 0.00000575

(real number)

You might be interested in
You are visiting your friend Fabio's house. You find that, as a joke, he filled his swimming pool with Kool-Aid, which dissolved
oksian1 [2.3K]

Answer:

Explanation:

The volume of contaminated water

= cross sectional area x height of water level

3.14 x 9 x 9 x 7.5 ft³

= 1907.55 ft³

mass = density x volume

= 1907.55 x 63.5 lbs

m = 121129.425 lbs

This mass has to be raised to the height of 8 ft before evacuation .

There is a rise of centre of mass of

8 - 7.5/2 ft

h = 4.25 ft

Energy required

= mgh

= 121129.425 x 32 x 4.25

= 16473601.8 unit.

3 0
3 years ago
Read 2 more answers
The electric field strength in the space between two closely spaced parallel disks is 1.0 10^5 N/C. This field is the result of
alex41 [277]

To solve this problem it is necessary to apply the concepts related to the capacitance in the disks, the difference of the potential and the load in the disc.

The capacitance can be expressed in terms of the Area, the permeability constant and the diameter:

C = \frac{\epsilon_0 A}{d}

Where,

\epsilon_0 = Permeability constant

A = Cross-sectional Area

d = Diameter

Potential difference between the two disks,

V = Ed

Where,

E = Electric field

d = diameter

Q = Charge on the disk equal to \rightarrow Q=ne=(3.9*10^9)(1.6*10^{-19})= 6.24*10^{-10}C

Through the value found and the expression given for capacitance and potential, we can define the electric charge as

Q = CV

Q = \frac{\epsilon A}{d}(Ed)

Q = \epsilon_0 AE

Q = \epsilon_0 \pi(\frac{d}{2})^2E

Q = \frac{\epsilon \pi d^2E}{4}

Re-arranging the equation to find the diameter of the disks, the equation will be:

d = \sqrt{\frac{4D}{\epsilon_0 \pi E}}

Replacing,

d = \sqrt{\frac{4(6.24*10^{-10})}{(8.85*10^{-12})\pi(1*10^{5})}}

d = 0.0299m

Therefore the diameter of the disks is 0.03m

8 0
3 years ago
The escape speed from an object is v2 = 2GM/R, where M is the mass of the object, R is the object's starting radius, and G is th
Rom4ik [11]

Answer:

Approximate escape speed = 45.3 km/s

Explanation:

Escape speed

        v=\sqrt{\frac{2GM}{R}}

Here we have

   Gravitational constant = G = 6.67 × 10⁻¹¹ m³ kg⁻¹ s⁻²

   R = 1 AU = 1.496 × 10¹¹ m

   M = 2.3 × 10³⁰ kg

Substituting

    v=\sqrt{\frac{2\times 6.67\times 10^{-11}\times 2.3\times 10^{30}}{1.496\times 10^{11}}}=4.53\times 10^4m/s=45.3km/s

Approximate escape speed = 45.3 km/s

6 0
3 years ago
What is the biggest barrier to the use of renewable energy in the United States?
storchak [24]
The biggest barrier to the use of renewable energy in the United States is the  Citizen opposition to negative environmental impact.
So, the answer is B.
7 0
2 years ago
A solid cylinder of mass M = 45 kg, radius R = 0.44 m and uniform density is pivoted on a frictionless axle coaxial with its sym
user100 [1]

Answer:

w_f = 1.0345 rad/s

Explanation:

Given:

- The mass of the solid cylinder M = 45 kg

- Radius of the cylinder R = 0.44 m

- The mass of the particle m = 3.6 kg

- The initial speed of cylinder w_i = 0 rad/s

- The initial speed of particle V_pi = 3.3 m/s

- Mass moment of inertia of cylinder I_c = 0.5*M*R^2

- Mass moment of inertia of a particle around an axis I_p = mR^2

Find:

- What is the magnitude of its angular velocity after the collision?

Solution:

- Consider the mass and the cylinder as a system. We will apply the conservation of angular momentum on the system.

                                     L_i = L_f

- Initially, the particle is at edge at a distance R from center of cylinder axis with a velocity V_pi = 3.3 m/s contributing to the initial angular momentum of the system by:

                                    L_(p,i) = m*V_pi*R

                                    L_(p,i) = 3.6*3.3*0.44

                                    L_(p,i) = 5.2272 kgm^2 /s

- While the cylinder was initially stationary w_i = 0:

                                    L_(c,i) = I*w_i

                                    L_(c,i) = 0.5*M*R^2*0

                                    L_(c,i) = 0 kgm^2 /s

The initial momentum of the system is L_i:

                                    L_i = L_(p,i) + L_(c,i)

                                    L_i = 5.2272 + 0

                                    L_i = 5.2272 kg-m^2/s

- After, the particle attaches itself to the cylinder, the mass and its distribution around the axis has been disturbed - requires an equivalent Inertia for the entire one body I_equivalent. The final angular momentum of the particle is as follows:

                                   L_(p,f) = I_p*w_f

- Similarly, for the cylinder:

                                   L_(c,f) = I_c*w_f

- Note, the final angular velocity w_f are same for both particle and cylinder. Every particle on a singular incompressible (rigid) body rotates at the same angular velocity around a fixed axis.

                                  L_f = L_(p,f) + L_(c,f)

                                  L_f = I_p*w_f + I_c*w_f

                                  L_f = w_f*(I_p + I_c)

-Where, I_p + I_c is the new inertia for the entire body = I_equivalent that we discussed above. This could have been determined by the superposition principle as long as the axis of rotations are same for individual bodies or parallel axis theorem would have been applied for dissimilar axes.

                                  L_i = L_f

                                  5.2272 = w_f*(I_p + I_c)

                                  w_f =  5.2272/ R^2*(m + 0.5M)

Plug in values:

                                  w_f =  5.2272/ 0.44^2*(3.6 + 0.5*45)

                                  w_f =  5.2272/ 5.05296

                                  w_f = 1.0345 rad/s

5 0
2 years ago
Other questions:
  • Can Someone explain the steps for this ?
    12·2 answers
  • A car has a unibody-type frame and is supported by four suspension springs, each with a force constant of 29600 n/m. the combine
    6·1 answer
  • The vector quantity that defines the distance and direction between two positions. It is a change in your position.
    9·1 answer
  • Match the term to the correct description.
    6·1 answer
  • A displacement vector is 34.0 m in length and is directed 60.0° east of north. What are the components of this vector? Northward
    15·1 answer
  • Pepe and Alfredo are resting on an offshore raft after a swim. They estimate that 3.0 m separates a trough and an adjacent crest
    8·1 answer
  • an unknown compound was determined to be 74.97% carbon, 8.39% hydrogen, and 16.64% oxygen. calculate the empirical formula
    8·2 answers
  • T.E = K.E + P.E
    10·1 answer
  • Explain why the light bulb isn't lighting up in the circuit<br> pictured on the right.
    10·1 answer
  • Pls help needs to be done soon thxs
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!