Answer:
ΔH for formation of 197g Fe⁰ = 1.503 x 10³ Kj => Answer choice 'B'
Explanation:
Given Fe₂O₃(s) + 2Al⁰(s) => Al₂O₃(s) + 2Fe⁰(s) + 852Kj
197g Fe⁰ = (197g/55.85g/mol) = 3.527 mol Fe⁰(s)
From balanced standard equation 2 moles Fe⁰(s) => 852Kj, then ...
3.527 mole yield (a higher mole value) => (3.527/2) x 852Kj = 1,503Kj (a higher enthalpy value).
______
NOTE => If 2 moles Fe gives 852Kj (exo) as specified in equation, then a <u>higher energy value</u> would result if the moles of Fe⁰(s) is <u>higher than 2 moles</u>. The ratio of 3.638/2 will increase the listed equation heat value to a larger number because 197g Fe⁰(s) contains more than 2 moles of Fe⁰(s) => 3.527 mole Fe(s) in 197g. Had the problem asked for the heat loss from <u>less than two moles Fe⁰(s)</u> - say 100g Fe⁰(s) (=1.79mole Fe⁰(s)) - then one would use the fractional ratio (1.79/2) to reduce the enthalpy value less than 852Kj.
Since it’s asking for chemical to thermal, B.
75% i think it is consumers
25% i think it is producer
<span>It is known
that acids compounds contains hydrogen and produces hydrogen ion in water. A binary
acid however is an acid that have two elements, one of the element has a
hydrogen attached to it. Examples of binary acids are hydrogen fluoride (HF),
hydrogen bromide (HBr) and hydrogen sulfide (H2S). In naming a binary acid, it
has two rules; one, as pure compounds and two, as acid solutions. For pure
compounds, start with the name ‘hydrogen’ and end the anion name with ‘-ide’. For
acidic compounds, start with ‘hydro-‘, end the anion with ‘-ic’ and add ‘acid’.</span>