The frequency of note C3 is 131
.
<u>Explanation:</u>
Frequency is the measure of repetition of same thing a certain number of times. So frequency is inversely proportional to the wavelength. As wavelength is distance between two successive crests or troughs in a sound wave.
And frequency is the completion of number of cycles in a given time in sound waves. The frequency and wavelength are inversely proportional to each other with velocity of sound being the proportionality constant.
Thus, here the speed of sound is given as 343 m/s, the wavelength of the note is also given as 2.62 m, then frequency will be as follows:

Thus,

So the frequency of note C3 is 131
.
Considering that the book is moving with constant speed, the force applied by Anna must be the same that the friction force:

If we clear the previous equation:
c adding research resources during an investigation
We Know, F = m*a
Here, F = 34 N
m = 213 Kg
Substitute their values in the equation,
34 = 213 * a
a = 34/213
a = 0.159 m/s²
So, your final answer & the acceleration of the object would be 0.159 m/s²
Hope this helps!
Answer:
521 nm
Explanation:
Given the values and units we are given, I'm assuming 5.76*10^14 Hz is frequency.
The formula to use here is λ * υ = c, where λ is wavelength, υ is frequency, and c is the speed of light.
λ = 