<span> The masses have no inertia about their own CM, and "the object" is the two masses. </span>
<span>1. Icm (at point A) = 2mr^2
hope this helps</span>
The correct answer is C. Mercury and Mars have the same gravitational force
Explanation:
This chart compares the different features of two planets in our solar system (Mercury and Mars). In this chart, the only numerical value or feature that is the same for both planets is gravity because for both planets gravity is 1.7 m/s2. This implies the gravitational force or the force that attracts objects towards the center of the planet is the same or that objects are pulled with the same force in both planets. Moreover, this factor depends on others such as mass, density, among others.
Period = (1/frequency) .
If frequency is 100 per second, then
Period = (1) / (100 per second) = 0.01 second .
Answer:

Explanation:
Given that,
Mass of a person, m = 84 kg
The person is standing at a top of Mt. Everest at an altitude of 8848 m
We need to find the gravitational potential energy of the person. We know that the gravitational potential energy is possessed due to the position of an object. It is given by :
E = mgh, g is the acceleration due to gravity

So, the gravitational potential energy of the person is 