Explanation:
It is given that,
Mass of the object, m = 0.8 g = 0.0008 kg
Electric field, E = 534 N/C
Distance, s = 12 m
Time, t = 1.2 s
We need to find the acceleration of the object. It can be solved as :
m a = q E.......(1)
m = mass of electron
a = acceleration
q = charge on electron
"a" can be calculated using second equation of motion as :




a = 16.67 m/s²
Now put the value of a in equation (1) as :


q = 0.0000249 C
or

Hence, this is the required solution.
Because the wall reflects sound waves to your ears bouncing off of the walls, even if it's in another room.
There is too much information given, it's hard to understand exactly which variables are important in this problem.
Answer:
A) 35 ft
B) 5 ft
C) Net displacement = distance covered by the dog to retrieve the stick - distance covered before the dog starts chewing the stick
Explanation:
A) Total distance covered by the dog = 20 + 15
= 35 ft
B) Since the other distance covered by the dog before chewing the stick, after the retrieval, was in an opposite direction to the initial direction, then;
total displacement of the dog = 20 - 15
= 5 ft
C) Net displacement = distance covered by the dog to retrieve the stick + distance covered before the dog starts chewing the stick
But, displacement involves a specified direction. The distance covered before the dog starts chewing the stick was in an opposite direction to the initial direction.
Thus,
Net displacement = distance covered by the dog to retrieve the stick - distance covered before the dog starts chewing the stick
Answer:
7.535×10^25 earth mass
Explanation:
for an approximate result,divide the mass value by 9.223e+18