1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnesinka [82]
4 years ago
12

Precipitation is greater over what and less over what? A. Land, sea B. Sea, land

Physics
1 answer:
Ksju [112]4 years ago
3 0
I would say letter A to this because we need rain water for crops plants. Also we need it so that we can drink it. Its less great over sea because as it merge with the salt in the ocean it becomes less drinkable and less usable.
You might be interested in
A block rides on a piston that is moving vertically with simple harmonic motion. (a) If the SHM has period 2.68 s, at what ampli
fredd [130]

Answer:

Part a)

A = 1.78 m

Part b)

f = 2 rev/s

Explanation:

Part A)

As we know that time period of the motion is given as

T = 2.68 s

so we have

\omega = \frac{2\pi}{T}

\omega = \frac{2\pi}{2.68}

\omega = 2.34 rad/s

now at the point of maximum amplitude the force equation when Normal force is about to zero is given as

mg = m\omega^2 A

so we have

A = \frac{g}{\omega^2}

A = \frac{9.81}{2.34^2}

A = 1.78 m

Part b)

Now if the amplitude of the SHM is 6.23 cm

and now at this amplitude if object will lose the contact then in that case again we have

mg = m\omega^2 A

g = \omega^2 (0.0623)

\omega = 12.5 rad/s

so now we have

2\pi f = 12.5

f = 2 rev/s

3 0
3 years ago
For metalloids on the periodic table, how do the group number and the period number relate?
lapo4ka [179]
Im guessing it's (a) since the numbers go in chronological order and you read the periodic table left to right
3 0
3 years ago
Read 2 more answers
In the design of a rapid transit system, it is necessary to balance the average speed of a train against the distance between st
bekas [8.4K]

Answer:

a) t = 746 s

b) t = 666 s

Explanation:

a)

  • Total time will be the sum of the partial times between stations plus the time stopped at the stations.
  • Due to the distance between stations is the same, and the time between stations must be the same (Because the train starts from rest in each station) we can find total time, finding the time for any of the distance between two stations, and then multiply it times the number of distances.
  • At any station, the train starts from rest, and then accelerates at 1.1m/s2 till it reaches to a speed of 95 km/h.
  • In order to simplify things, let's first to convert this speed from km/h to m/s, as follows:

       v_{1} = 95 km/h *\frac{1h}{3600s}*\frac{1000m}{1 km} = 26.4 m/s  (1)

  • Applying the definition of acceleration, we can find the time traveled by the train before reaching to this speed, as follows:

       t_{1} = \frac{v_{1} }{a_{1} } = \frac{26.4m/s}{1.1m/s2} = 24 s (2)

  • Next, we can find the distance traveled during this time, assuming that the acceleration is constant, using the following kinematic equation:

       x_{1} = \frac{1}{2} *a_{1} *t_{1} ^{2} = \frac{1}{2} * 1.1m/s2*(24s)^{2} = 316.8 m  (3)

  • In the same way, we can find the time needed to reach to a complete stop at the next station, applying the definition of acceleration, as follows:

       t_{3} = \frac{-v_{1} }{a_{2} } = \frac{-26.4m/s}{-2.2m/s2} = 12 s (4)

  • We can find the distance traveled while the train was decelerating as follows:

       x_{3} = (v_{1} * t_{3})   + \frac{1}{2} *a_{2} *t_{3} ^{2} \\ = (26.4m/s*12s) - \frac{1}{2} * 2.2m/s2*(12s)^{2} = 316.8 m - 158.4 m = 158.4m  (5)

  • Finally, we need to know the time traveled at constant speed.
  • So, we need to find first the distance traveled at the constant speed of 26.4m/s.
  • This distance is just the total distance between stations (3.0 km) minus the distance used for acceleration (x₁) and the distance for deceleration (x₃), as follows:
  • x₂ = L - (x₁+x₃) = 3000 m - (316.8 m + 158.4 m) = 2525 m (6)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{2525m}{26.4m/s} = 95.6 s   (7)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 95.6 s + 12 s = 131.6 s (8)
  • Due to we have six stations (including those at the ends) the total time traveled while the train was moving, is just t times 5, as follows:
  • tm = t*5 = 131.6 * 5 = 658.2 s (9)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 4 intermediate stops, we need to add to total time 22s * 4 = 88 s, as follows:
  • Ttotal = tm + 88 s = 658.2 s + 88 s = 746 s (10)

b)

  • Using all the same premises that for a) we know that the only  difference, in order to find the time between stations, will be due to the time traveled at constant speed, because the distance traveled at a constant speed will be different.
  • Since t₁ and t₃ will be the same, x₁ and x₃, will be the same too.
  • We can find the distance traveled at constant speed, rewriting (6) as follows:
  • x₂ = L - (x₁+x₃) = 5000 m - (316.8 m + 158.4 m) = 4525 m (11)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{4525m}{26.4m/s} = 171.4 s   (12)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 171.4 s + 12 s = 207.4 s (13)
  • Due to we have four stations (including those at the ends) the total time traveled while the train was moving, is just t times 3, as follows:
  • tm = t*3 = 207.4 * 3 = 622.2 s (14)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 2 intermediate stops, we need to add to total time 22s * 2 = 44 s, as follows:
  • Ttotal = tm + 44 s = 622.2 s + 44 s = 666 s (15)
7 0
3 years ago
Water flowing from a waterfall before it hits the pond below?
anastassius [24]

Answer:

Kinetic Energy

Explanation:

Ang prinsipyo ay nagsasaad na ang enerhiya ay hindi maaaring malikha o masira, ngunit maaari lamang ma-convert mula sa isang anyo patungo sa isa pa. Ang tubig sa tuktok ng napakataas na talon ay nagtataglay ng gravitational potential energy. Habang bumabagsak ang tubig, ang enerhiya na ito ay na-convert sa kinetic energy, na nagreresulta sa isang daloy sa isang mataas na bilis.

8 0
2 years ago
The curved line PQR is the velocity-time graph for a car starting from rest.
Elden [556K]
His. Curbs I b h bs. H b u b
3 0
3 years ago
Other questions:
  • Alternative between running snd walking
    9·1 answer
  • In the United States, car accidents are the leading cause of death for teenagers. Wearing seat belts helps save lives. Describe
    10·1 answer
  • PLEASE HELP ME
    8·1 answer
  • Chemical energy is a form of _____ energy.
    13·1 answer
  • Please, please, please help me!!!!!!
    9·1 answer
  • It is a cold night around the campfire. Megan is trying to get warm by sitting close to the fire and clutching her mug of hot ch
    11·1 answer
  • A billiard ball collides with a second identical ball in an elastic head-on collision. What is the kinetic energy of the system
    13·2 answers
  • An electric motor is rated at 900 W. How much force does it apply when moving
    11·1 answer
  • Can we make electromagnet with copper​
    12·2 answers
  • What is the weight of a 63.7 kg person? ?N
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!