Answer:

Explanation:
The apparent brightness follows an inverse square law, therefore we can write:

where I is the apparent brightness and r is the distance from the Sun.
We can also rewrite the law as
(1)
where in this problem, we have:
apparent brightness at a distance
, where
million km
We want to estimate the apparent brightness at
, where
is ten times
, so

Re-arranging eq.(1), we find
:

Answer:
Sorry cant find the answer but i hope you got it right and if you didn't you'll still do great. :)
Explanation:
Answer:
b) -10 m/s
Explanation:
In perfectly elastic head on collisions of identical masses, the velocities are exchanged with one another.
Answer:
M' = μ₀n₁n₂πr₂²
Explanation:
Since r₂ < r₁ the mutual inductance M = N₂Ф₂₁/i₁ where N₂ = number of turns of solenoid 2 = n₂l where n₂ = number of turns per unit length of solenoid 2 and l = length of solenoid, Ф₂₁ = flux in solenoid 2 due to magnetic field in solenoid 1 = B₁A₂ where B₁ = magnetic field due to solenoid 1 = μ₀n₁i₁ where μ₀ = permeability of free space, n₁ = number of turns per unit length of solenoid 1 and i₁ = current in solenoid 1. A₂ = area of solenoid 2 = πr₂² where r₂ = radius of solenoid 2.
So, M = N₂Ф₂₁/i₁
substituting the values of the variables into the equation, we have
M = N₂Ф₂₁/i₁
M = N₂B₁A₂/i₁
M = n₂lμ₀n₁i₁πr₂²/i₁
M = lμ₀n₁n₂πr₂²
So, the mutual inductance per unit length is M' = M/l = μ₀n₁n₂πr₂²
M' = μ₀n₁n₂πr₂²
Does it not tell you how long it took it to reach the ground? Constant Velocity should be distance over time