The width of the central bright fringe <u>becomes wider</u> in the resulting diffraction pattern of a single-slit diffraction experiment.
<h3>What is diffracted light?</h3>
The act of bending light around corners such that it spreads out and illuminates regions where a shadow is anticipated is known as diffraction of light. In general, since both occur simultaneously, it is challenging to distinguish between diffraction and interference. The diffraction of light is what causes the silver lining we see in the sky. A silver lining appears in the sky when the sunlight penetrates or strikes the cloud.
<h3>What precisely is single slit diffractive?</h3>
The single-slit diffraction experiment allows us to examine the phenomena of light bending, or diffraction, which enables coherent light from a source to interfere with itself and generate the diffraction pattern, a recognizable pattern on the screen. When the sources are small enough to be relative to the wavelength of light, diffraction is seen.
Learn more about diffraction
brainly.com/question/8645206
#SPJ4
Answer:
The magnetic field strength needed is 1.619 T
Explanation:
Given;
Number of turns, N = 485-turn
Radius of coil, r = 0.130 m
time of revolution, t = 4.17 ms = 0.00417 s
average induced emf, V = 10,000 V.
Average induced emf is given as;
V = -ΔФ/Δt
where;
ΔФ is change in flux
Δt is change in time
ΔФ 
where;
N is the number of turns
B is the magnetic field strength
A is the area of the coil = πr²
θ is the angle of inclination of the coil and the magnetic field,

V = NBACos0/t
V = NBA/t
B = (Vt)/NA
B = (10,000 x 0.00417) / (485 x π x 0.13²)
B =1.619 T
Thus, the magnetic field strength needed is 1.619 T
Answer:
= 3.36 mm
Explanation:
From Ohm's law,
(Voltage = Current * Resistance)

The geometric definition of resistance is

where
is the resistivity of the material,
and
are the length and cross-sectional area, respectively.


Since the wire is assumed to have a circular cross-section, its area is given by
where
is the diameter.


Resistivity of copper =
. With these and other given values,



The conclusions that are specifically supported by the data in Table 1 is that An increase in the number of rubber bands causes an increase in the acceleration. That is option D.
<h3>What is acceleration?</h3>
Acceleration is defined as the rate at which the velocity of a moving object changes with respect to time which is measured in meter per second per second (m/s²).
From the table given,
Trial 1 ----> 1 band = 0.24m/s²
Trial 2 ----> 2 bands = 0.51 m/s²
Trial 3 ----> 3 bands = 0.73 m/s²
Trial 4 -----> 4 bands = 1.00 m/s²
This clearly shows that increase in the number of bands increases the acceleration of one brick that was placed on the cart.
This is because increasing the number of rubber bands has the effect of doubling the force leading to an effective increase in velocity of the moving cart.
Learn more about acceleration here:
brainly.com/question/25749514
#SPJ1
I DONT know FiGURE it out YOURSELF