Answer:
Explanation:
Pressure is equal to the force divided by the area on which it acts. Since the smaller piston has less area so from less force also we can get more efficiency in work. And according to the Pascal's principle, in a hydraulic system, pressure exerted on a piston produces an equal increase in pressure on another piston in the system. Thus by applying little force in the smaller piston, we can get same force from larger piston too. A hydraulic machine magnifies force.
Answer:
Explanation:
Given that,
5J work is done by stretching a spring
e = 19cm = 0.19m
Assuming the spring is ideal, then we can apply Hooke's law
F = kx
To calculate k, we can apply the Workdone by a spring formula
W=∫F.dx
Since F=kx
W = ∫kx dx from x = 0 to x = 0.19
W = ½kx² from x = 0 to x = 0.19
W = ½k (0.19²-0²)
5 = ½k(0.0361-0)
5×2 = 0.0361k
Then, k = 10/0.0361
k = 277.008 N/m
The spring constant is 277.008N/m
Then, applying Hooke's law to find the applied force
F = kx
F = 277.008 × 0.19
F = 52.63 N
The applied force is 52.63N
Answer:

Explanation:
<u>LC Circuit</u>
It's a special circuit made of three basic elements: The AC source, a capacitor, and an inductor. The charge, current, and voltage are oscillating when there is an interaction between the electric and magnetic fields of the elements. The following variables will be used for the formulas:
= charge of the capacitor in any time 
= initial charge of the capacitor
=angular frequency of the circuit
= current through the circuit in any time 
The charge in an LC circuit is given by

The current is the derivative of the charge

We are given

It means that
![q(t_1) = q_0 \, cos (\omega t_1 )=q_1\ .......[eq 1]](https://tex.z-dn.net/?f=q%28t_1%29%20%3D%20q_0%20%5C%2C%20cos%20%28%5Comega%20t_1%20%29%3Dq_1%5C%20.......%5Beq%201%5D)
![i(t_1) = - \omega q_0 \, sin(\omega t_1)=i_1.........[eq 2]](https://tex.z-dn.net/?f=i%28t_1%29%20%3D%20-%20%5Comega%20q_0%20%5C%2C%20sin%28%5Comega%20t_1%29%3Di_1.........%5Beq%202%5D)
From eq 1:

From eq 2:

Squaring and adding the last two equations, and knowing that


Operating

Solving for 

Now we know the value of
, we repeat the procedure of eq 1 and eq 2, but now at the second time
, and solve for 

Solving for 

Now we replace the given values. We'll assume that the placeholder is a pi for the frequency, i.e.




Finally


Answer:
The final temperature of the gas is <em>114.53°C</em>.
Explanation:
Firstly, we calculate the change in internal energy, ΔU from the first law of thermodynamics:
ΔU=Q - W
ΔU = 1180 J - 2020 J = -840 J
Secondly, from the ideal gas law, we calculate the final temperature of the gas, using the change in internal energy:


Then we make the final temperature, T₂, subject of the formula:



Therefore the final temperature of the gas, T₂, is 114.53°C.