The two fields were physical quantities are used in motion calculations are length and mass with time.
The physical quantity in a field is referred as every point in a particular space time.
<h3>
How physical quantities are used in motion calculations?</h3>
If we consider an object, the physical property of the object is considered as physical quantity and to measure that object is known as units. The Physical quantity can be classified as elemental physical quantity and derived physical quantity. Length, mass, time, etc.. are elemental physical quantity, momentum, density, acceleration, etc... are derived physical quantity. Only for charge and temperature the physical quantity will be less than zero.
Length, mass and time are the physical quantities used in motion calculations.
Learn more about motion calculations,
brainly.com/question/8701763
#SPJ2
Answer:
r=6.05km/hr
z=59.1 degree to the horizontal
Explanation:
A bird is flying east at 5.2 kilometers/hour relative to the air. There's a crosswind blowing at 3.1 kilometers/hour toward the south relative to the ground. What is the bird's velocity relative to the ground? State your answer to one decimal place
can be solved using pythagoras theorem
r^2=o^2+a^2
r^2=5.2^2+3.1^2
r^2=36.65
r=6.1km/hr is te birds velocity relative to the ground
tanz=5.2/3.1
z=tan^-1(5,2/3.1)
z=59.1 degree to the horizontal
Answer:
The drift speed of the electrons in the wire is 2.12x10⁻⁴ m/s.
Explanation:
We can find the drift speed by using the following equation:
Where:
I: is the current = 4.50 A
n: is the number of electrons
q: is the modulus of the electron's charge = 1.6x10⁻¹⁹ C
A: is the cross-sectional area = 2.20x10⁻⁶ m²
We need to find the number of electrons:
Now, we can find the drift speed:
Therefore, the drift speed of the electrons in the wire is 2.12x10⁻⁴ m/s.
I hope it helps you!
Answer:
current I1 = current I2
Explanation:
since the wire is made up of the same material, from Kirchoff's current law sum of currents entering a particular node or segment of wire is equals to the sum of currents leaving that particular node or segment of wire
The mistake here is that the total energy of the system does not change - generally, the total amount of energy in a system never changes unless the energy enters or leaves the system somehow (for example, if you see the Earth alone as a system, then energy from the sun enters the system and some energy is lost to space in the form of heat).