c.The warm surface water results in moist air and more rainfall.
Explanation:
- During upwelling, cold water in the ocean is stirred up and brought to the surface.
- The warmer surface water is then taken into deeper parts of the ocean.
- Upwelling allows for nutrient mixing in the ocean and allows for useful gases to circulate well.
- The warm surface water causes the air to be moisty.
- When the air is carried landward towards the coast, it leads to rainfall when the saturated air releases the water.
- The air then becomes cold and dry and it rises up.
- Therefore, warm surface water results in moist air and more rainfall.
Learn more:
Ocean current brainly.com/question/4117397
#learnwithBrainly
The mass of ice melted as a result of friction between the ice and the horizontal surface is 2.78g
<u>Explanation:</u>
Given,
Temperature, T = 0°C
Initial mass, Mi = 62kg
Speed, s = 5.48m/s
Distance, x = 26.8m
Friction is present.
Mass of ice melted = ?
We know,
The amount of energy required for the melting of ice is exactly equal to the initial kinetic energy of the block of ice
and

Therefore, 
KE = 930.94 Joules
Ice melting lateral heat is 334 kJ/kg = 334000 J/kg.
Therefore, the melted mass of the ice = 930.94 / 334000 = 0.00278 kg = 2.78 g.
Thus, The mass of ice melted as a result of friction between the ice and the horizontal surface is 2.78g
Different: The weak nuclear force is responsible for radioactive decay within an atom of a substance, while the electromagnetic force causes electrostatic force between charged particles.
Different: The weak force has a very small range of effectiveness (where the force can be felt) while the electromagnetic force has an infinite range.
Same: Both forces act within an nucleus, or on a nuclear level.
Same: The weak nuclear force is mediated by charged particles called bosons, and the electrostatic force is only present within charged objects
The last one may be a bit of a stretch but I hope this helped a bit!
Answer:
4 Because Hypothesis sentence always have to be "If" and Then a "then"