1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andre [41]
3 years ago
9

3. A ray of light incident on one face of an equilateral glass prism is refracted in such a way that it emerges from the opposit

e surface at an angle of 900 to the normal. Calculate the i. angle of incidence. ii. minimum deviation of the ray of light passing through the prism [n_glass=1.52]
Physics
1 answer:
Vilka [71]3 years ago
4 0

Answer:

i) angle of incidence;i = 29.43°

ii) δm = 38.92°

Explanation:

Prism is equilateral so angle of prism (A) = 60°

Refractive index of glass; n_glass = 1.52

A) Let's assume the incident angle = i and Critical angle = θc

We know that, sin θc = 1/n

Thus;

sin θc = 1/n_glass

θc = sin^(-1) (1/n_glass)

θc = sin^(-1) (1/1.52)

θc = 41.14°

Now, the angle of prism will be the sum of external angle that is critical angle and reflected angle.

Thus;

A = r + θc

r = A - θc

So;

r = 60° - 41. 14°

r = 18.86°

From, Snell's law. If we apply it to this question, we will have;

(sin i)/(sin r) = n_glass

Where;

i is angle of incidence and r is angle of reflection.

Let's make i the subject;

i = sin^(-1) (n_glass × sin r)

i = sin^(-1) (1.52 × sin 18.86)

i = sin^(-1) 0.4914

i = 29.43°

B) The formula to calculate minimum deviation would be from;

μ = [sin ((A + δm)/2)]/(sin A/2)

Where;

μ is Refractive index

δm is minimum angle of deviation

A is angle of prism

Now Refractive index is given by a formula; μ = (sin i)/(sin r)

So; μ = (sin 29.43)/(sin 18.86)

μ = 1.52

Thus;

1.52 = [sin ((60 + δm)/2)]/(sin 60/2)

1.52 * sin 30 = sin ((60 + δm)/2)

0.76 = sin ((60 + δm)/2)

sin^(-1) 0.76 = ((60 + δm)/2)

49.46 × 2 = (60 + δm)

98.92 - 60 = δm

δm = 38.92°

You might be interested in
When have you experienced an increase in kinetic<br> energy within a system?
Mars2501 [29]

Answer:

If a man starts running on a boat with an acceleration a with respect to the boat, there is no external force that acts on the Boat+Man system

8 0
3 years ago
Amanda spent 2/5 of her time after school doing homework and ¼ of her remaining time riding her bike. If she rode her bike for 4
Doss [256]

Answer:120 min

Explanation:

Given

Amanda  spent \frac{2}{5} of her time after school doing Home work

And \frac{1}{4} of her remaining  time riding her bike

It is given that she rode her bike for 45 minutes in a week

Let t be the time after school

therefore Amanda spend \frac{2t}{5} in home work and  \frac{3t}{5} time is left

From remaining \frac{3t}{5} time she spends \frac{1}{4} time riding her bike

therefore \frac{3t}{5}\times \frac{1}{4}=45

thus t=300 min

therefore time  spent on home work is \frac{2}{5}\times 300=120 min

6 0
3 years ago
Part complete Sound with frequency 1240 Hz leaves a room through a doorway with a width of 1.11 m . At what minimum angle relati
Sedbober [7]

Answer:

14.43° or 0.25184 rad

Explanation:

v = Speed of sound in air = 343 m/s

f = Frequency = 1240 Hz

d = Width in doorway = 1.11 m

Wavelength is given by

\lambda=\frac{v}{f}\\\Rightarrow \lambda=\frac{343}{1240}\\\Rightarrow \lambda=0.2766\ m

In the case of Fraunhofer diffraction we have the relation

dsin\theta=\lambda\\\Rightarrow \theta=sin^{-1}\frac{\lambda}{d}\\\Rightarrow \theta=sin^{-1}\frac{0.2766}{1.11}\\\Rightarrow \theta=14.43^{\circ}\ or\ 0.25184\ rad

The minimum angle relative to the center line perpendicular to the doorway will someone outside the room hear no sound is 14.43° or 0.25184 rad

6 0
3 years ago
If you were to triple the size of the Earth (R = 3R⊕) and double the mass of the Earth (M = 2M⊕), how much would it change the g
EastWind [94]

Answer:

Decreased by a factor of 4.5

Explanation:

"We have Newton formula for attraction force between 2 objects with mass and a distance between them:

F_G = G\frac{M_1M_2}{R^2}

where G =6.67408 × 10^{-11} m^3/kgs^2 is the gravitational constant on Earth. M_1, M_2 are the masses of the object and Earth itself. and R distance between, or the Earth radius.

So when R is tripled and mass is doubled, we have the following ratio of the new gravity over the old ones:

\frac{F_G}{f_g} = \frac{G\frac{M_1M_2}{R^2}}{G\frac{M_1m_2}{r^2}}

\frac{F_G}{f_g} = \frac{\frac{M_2}{R^2}}{\frac{m_2}{r^2}}

\frac{F_G}{f_g} = \frac{M_2}{R^2}\frac{r^2}{m_2}

\frac{F_G}{f_g} = \frac{M_2}{m_2}(\frac{r}{R})^2

Since M_2 = 2m_2 and r = R/3

\frac{F_G}{f_g} = \frac{2}{3^2} = 2/9 = 1/4.5

So gravity would have been decreased by a factor of 4.5  

8 0
3 years ago
An object is 1.0 cm tall and its erect image is 5.0 cm tall. what is the exact magnification?
ikadub [295]
The exact magnification of the objects is calculated by dividing the cinema. We calculate it by diving the erect image size by the object size. From the given above, we find the exact magnification by dividing 5.0 cm by 1.0 cm. Thus, the answer would be 5. 
7 0
3 years ago
Other questions:
  • Which change in a limiting factor would increase the carrying capacity for earthworms on the ground of a mixed-oak forest? A. in
    15·1 answer
  • An object that’s charged has more electrons than protons. An object that’s charged has fewer electrons than protons. An object t
    7·1 answer
  • A favorable entropy change occurs when δs is positive. what can be said about the order of the system when δs is positive?
    6·1 answer
  • A car travels 40 miles in 30 minutes.
    12·1 answer
  • Which sentence best describes the axis of rotation of Earth?
    12·1 answer
  • Jordan wants to know the difference between using a 60-W and 100-W lightbulb in her lamp. She calculates the energy it would tak
    6·1 answer
  • A man jogs at a velocity of 2.5 m/s west for 1,200 s. He then walks at a velocity 1.0 m/s east for 500 s and then stops to rest
    12·1 answer
  • A basketball player jumps straight up with a speed of 14 m/s. How high did the player jump?
    12·1 answer
  • What is the change in weight of a hollow cylinder of height 8 cm and radius 3 cm when the air is pumped out of it
    12·1 answer
  • A rocket is traveling toward the earth at 12c when it ejects a missile forward at 12c relative to the rocket.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!