Answer:
t = 5 s
Explanation:
Data:
- Initial Velocity (Vo) = 7 m/s
- Acceleration (a) = 3 m/s²
- Final Velocity (Vf) = 22 m/s
- Time (t) = ?
Use formula:
Replace:
Solve the subtraction of the numerator:
It divides:
How much time did it take the car to reach this final velocity?
It took a time of <u>5 seconds.</u>
Here’s my work to your question. I used Newton’s Second Law and a kinematics equation to arrive at the answer.
Initial velocity u = 50 miles/hour
acceleration a = 10 miles/hour
Time t = 2 hours
Distance travelled S = ut + (at^2)/2
Substituting the values in the second equation of motion,
S = 50*2 + (10 * 2 *2)/2
S = 100 + 20
S = 120 miles
Therefore the distance travelled by the car in the next two hours is 120 miles
Answer:
the power of the gravitational force depends on the factors
mass and the distance
Explanation:
Given:
B =
T
V=
q = 2.5 ×
C
α = 90
To find:
Force = ?
Formula used:
Force on the moving charge is given by,
F = q V B sin α
Where F = force exerted on moving charge
V = velocity of charge
q = charge
α = angle between direction of V and B
Solution:
F = q V B sin α
Where F = force exerted on moving charge
V = velocity of charge
q = charge
α = angle between direction of V and B
F = 
F = 37.5 × 
F = 3.75 Newton
Thus, the force acting on the moving charge is 3.75 Newton.