Answer:
La rapidez media es 25 m/s en ambos casos.
Explanation:
Podemos definir como rapidez media al cociente entre la distancia total recorrida y el tiempo que se tardó en recorrer dicha distancia.
Así tenemos:
Rapidez media = Distancia/tiempo.
Entonces si el guepardo recorre 100m en 4 segundos, su rapidez media es:
Rapidez media = 100m/4s = 25 m/s
En el caso de que el guepardo recorre 50 metros en 2 segundos, su rapidez media será:
rapidez media = 50m/2s = 25m/s
Es el mismo resultado, pues recorrió la mitad de distancia en la mitad de tiempo.
Answer:
A factor of 2*4 = 8
Explanation:
F_g = (G*m1*m2)/r^2
where m1 and m2 are the two masses, G is Newton's gravitational constant, and r is the distance between the center of mass of the two objects.
So, if you double m1 and quadruple m2:
m1' = 2*m1
m2' = 4*m2
Then F_g' = (G*m1'*m2')/r^2 = (G*2*m1*4*m2)/r^2 = 8*(G*m1*m2)/r^2 = 8*F_g
Answer:
a₂ = m₁ / m₂ a₁
Explanation:
For this exercise we note that the attraction between the two stars is an action and reaction force, therefore it has the same magnitude, but it is applied to each of the bodies
Let's apply Newton's second law on the star 1
F₁ = m₁ a₁
Newton's second law in star 2
F₂ = m₂ a₂
| F₁ | = | F₂ |
m₁ a₁ = m₂ a₂
a₂ = m₁ / m₂ a₁
Answer:
true
Explanation:
place hand under base and one on the arm/handle
Answer:
B.)Angular momentum is always conserved
Explanation:
Angular momentum is given by:

where
m is the mass of the object
v is its speed
r is the distance between the object and the centre of its circular trajectory
In absence of external torques, angular momentum is always conserved. That means that for the spinning star, if its radius r decreases (because it shrinks), in order for L (the angular momentum) to be conserved, the speed (v) must increases, therefore the spinning star speeds up.
So, the correct choice is
B.)Angular momentum is always conserved