1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naily [24]
3 years ago
8

Suppose a well-designed optical instrument is composed of two converging lenses separated by 14 cm. The focal lengths of the len

ses are 0.60 and 4.5 cm. Is the instrument a microscope or a telescope
Physics
1 answer:
7nadin3 [17]3 years ago
7 0

Answer:

The instrument is a microscope

Explanation:

the length of a given instrument is 14cm which is more than the sum of the focal length (0.6 + 4.5) = 5.1cm

however. the length of microscope is more than the sum of focal length of objective and eye pieces

You might be interested in
In a long, straight, vertical lightning stroke, electrons move downward and positive ions move upward and constitute a current o
uranmaximum [27]

The number of revolutions the electron completes in 60.0-μs of the strike is 134.

A magnetic field, a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. When a charge moves through a magnetic field, a force that is perpendicular to both its own velocity and the magnetic field operates on it.

Electrons go downward and positive ions move upward in a long, straight, vertical lightning stroke, creating a current of magnitude I = 20.0 kA.

A free electron travels through the air at a speed of v = 300 m/s at a place r = 50.0 m east of the stroke's center.

Let the magnetic field be B, and F be the magnetic force.

Counterclockwise horizontal arcs of field lines are produced by the upward lightning current.

We have, B = 8 × 10⁻⁵ T and;

The mass of an electron is, m = 9.11 × 10⁻³¹ kg

The time interval is Δt = 60 μs = 60 × 10⁻⁶

The angular frequency is given as:

ω = qB /m = 2πN / Δt

Where the number of revolutions is N.

So,

N = qBΔt /2πm

N = (l.60 × l0⁻¹⁹)(8 × l0⁻⁵)(60 × 10⁻⁶) / 2π(9.11 × 10⁻³¹ kg)

N = 134 revolutions

Learn more about current here:

brainly.com/question/1100341

#SPJ4

7 0
2 years ago
A fox runs at a speed of 16 m/s and then stops to eat a rabbit. If this all took 120
GalinKa [24]

Answer:

a = 52s²

Explanation:

<u>How to find acceleration</u>

Acceleration (a) is the change in velocity (Δv) over the change in time (Δt), represented by the equation a = Δv/Δt. This allows you to measure how fast velocity changes in meters per second squared (m/s^2). Acceleration is also a vector quantity, so it includes both magnitude and direction.

<u>Solve</u>

We know initial velocity (u = 16), velocity (v = 120) and acceleration (a = ?)

We first need to solve the velocity equation for time (t):

v = u + at

v - u = at

(v - u)/a = t

Plugging in the known values we get,

t = (v - u)/a

t = (16 m/s - 120 m/s) -2/s2

t = -104 m/s / -2 m/s2

t = 52 s

7 0
2 years ago
A mass spectrometer is being used to separate common oxygen-16 from the much rarer oxygen-18, taken from a sample of old glacial
Nataly_w [17]

Answer:

0.092 m

Explanation:

A charged moving particle immersed in a region with magnetic field follows a circular trajectory at constant speed (uniform circular motion), since the magnetic forces acts perpendicular to the direction of motion of the particle.

Since the magnetic force acts as centripetal force, we can write:

qvB=m\frac{v^2}{r}

where

q is the charge of the particle

v is its velocity

B is the strength of the magnetic field

m is the mass of the particle

r is the radius of the orbit

Solving the equation for r,

r=\frac{mv}{qB}

For the ion of oxygen-16, we have:

m_A=2.66\cdot 10^{-26}kg

q_A = 1.6\cdot 10^{-19}C (it is singly charged)

v_A=2.90\cdot 10^6 m/s

B_A=1.30 T

So the radius of its orbit is

r_A=\frac{m_A v_A}{q_A B_A}=\frac{(2.66\cdot 10^{-26})(2.90\cdot 10^6)}{(1.6\cdot 10^{-19})(1.30)}=0.371 m

For the ion of oxygen-18, we have:

m_B = \frac{18}{16}m_A = 2.99\cdot 10^{-26}kg

q_B = 1.6\cdot 10^{-19}C (it is singly charged)

v_B=2.90\cdot 10^6 m/s

B_B=1.30 T

So the radius of its orbit is

r_B=\frac{m_B v_B}{q_B B_B}=\frac{(2.99\cdot 10^{-26})(2.90\cdot 10^6)}{(1.6\cdot 10^{-19})(1.30)}=0.417 m

After each ion has travelled a semicircle, the separation between the two ions will be twice the difference in their radius, so:

d=2(r_B-r_A)=2(0.417-0.371)=0.092 m

3 0
3 years ago
Any child is pushing a shopping cart at a speed of 1.5 m/s.how long will it take this child to push the cart down the aisle with
NARA [144]
1.5 m/s is the velocity. 9.3 m is the length of aisle, over which Distance will be covered. Time is demanded in which the child will move the cart over the aisle with 1.5 m/s. v=S/t and, t=S/v Put values, t=9.3/1.5=6.2 s
7 0
3 years ago
Consider a uniformly charged sphere of radius Rand total charge Q. The electric field Eout outsidethe sphere (r≥R) is simply tha
AlexFokin [52]

1) Electric potential inside the sphere: \frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2) Ratio Vcenter/Vsurface: 3/2

3) Find graph in attachment

Explanation:

1)

The electric field inside the sphere is given by

E=\frac{1}{4\pi \epsilon_0}\frac{Qr}{R^3}

where

\epsilon_0=8.85\cdot 10^{-12}F/m is the vacuum permittivity

Q is the charge on the sphere

R is the radius of the sphere

r is the distance from the centre at which we compute the field

For a radial field,

E(r)=-\frac{dV(r)}{dr}

Therefore, we can find the potential at distance r by integrating the expression for the electric field. Calculating the difference between the potential at r and the potential at R,

V(R)-V(r)=-\int\limits^R_r  E(r)dr=-\frac{Q}{4\pi \epsilon_0 R^3}\int r dr = \frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)

The potential at the surface, V(R), is that of a point charge, so

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore we can find the potential inside the sphere, V(r):

V(r)=V(R)+\Delta V=\frac{Q}{4\pi \epsilon_0 R}+\frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2)

At the center,

r = 0

Therefore the potential at the center of the sphere is:

V(r)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})\\V(0)=\frac{3Q}{8\pi \epsilon_0 R}

On the other hand, the potential at the surface is

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore, the ratio V(center)/V(surface) is:

\frac{V(0)}{V(R)}=\frac{\frac{3Q}{8\pi \epsilon_0 R}}{\frac{Q}{4\pi \epsilon_0 R}}=\frac{3}{2}

3)

The graph of V versus r can be found in attachment.

We observe the following:

- At r = 0, the value of the potential is \frac{3}{2}V(R), as found in part b) (where V(R)=\frac{Q}{4\pi \epsilon_0 R})

- Between r and R, the potential decreases as -\frac{r^2}{R^2}

- Then at r = R, the potential is V(R)

- Between r = R and r = 3R, the potential decreases as \frac{1}{R}, therefore when the distance is tripled (r=3R), the potential as decreased to 1/3 (\frac{1}{3}V(R))

Learn more about electric fields and potential:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
3 years ago
Other questions:
  • Two long conducting cylindrical shells are coaxial and have radii of 20 mm and 80 mm. The electric potential of the inner conduc
    6·1 answer
  • Rosa uses the formula (vi cos)t to do a calculation. Which value is Rosa most likely trying to find?
    12·2 answers
  • A bowling ball is dropped from a height of 24 feet.
    15·1 answer
  • Where in your house do you find radio waves
    5·2 answers
  • True or False? In the quark era, it was so hot that matter and
    9·1 answer
  • If you found a galaxy with an Ha emission line that had a wavelength of 756.3 nm, what would be the galaxy’s distance if the Hub
    15·1 answer
  • Why is the Big Bang a theory and not a fact
    15·2 answers
  • A red car has a head-on collision with an approaching blue car with the same magnitude of momentum. A green car driving with the
    6·2 answers
  • 7. Two objects in thermal equilibrium have -
    9·1 answer
  • How many species number for h20
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!