True! they're the lowest in mass of all parts of the atom
Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
Answer:
V_inside = 36 V
Explanation:
<u>Given </u>
We are given a sphere with a positive charge q with radius R = 0.400 m Also, the potential due to this charge at distance r = 1.20 m is V = 24.0 V.
<u>Required</u>
We are asked to calculate the potential at the centre of the sphere
<u>Solution</u>
The potential energy due to the sphere is given by equation
V = (1/4*π*∈o) × (q/r) (1)
Where r is the distance where the potential is measured, it may be inside the sphere or outside the sphere. As shown by equation (1) the potential inversely proportional to the distance V
V ∝ 1/r
The potential at the centre of the sphere depends on the radius R where the potential is the same for the entire sphere. As the charge q is the same and the term (1/4*π*∈o) is constant we could express a relation between the states , e inside the sphere and outside the sphere as next
V_1/V_2=r_2/r_1
V_inside/V_outside = r/R
V_inside = (r/R)*V_outside (2)
Now we can plug our values for r, R and V_outside into equation (2) to get V_inside
V_inside = (1.2 m )/(0.600)*18
= 36 V
V_inside = 36 V
Answer:b,c,d I think
Explanation:
B because it moves sediment, or sand, to the ocean, c because it pollutes the ocean with plastic and stuff, and d because the bacteria can be harmful