The fraction of the tensile strength which is the stress on the femur is 1.4%.
<h3>What is Tensile strength?</h3>
This is defined as the amount of load or stress that a material can handle before it stretches and breaks.
The femur which is located in the thigh is the largest bone in the body and it exerts a fraction of 1.4% tensile strength through the stress encountered on the femur when the man stands with one leg.
Read more about Tensile strength here brainly.com/question/25748369
Answer:
To achieve the velocity of 40 m/sec height will become 4 times
Explanation:
We have given initially truck is at rest and attains a speed of 20 m/sec
Let the mass of the truck is m
At the top of the hill potential energy is mgh and kinetic energy is 
So total energy at the top of the hill 
At the bottom of the hill kinetic energy is equal to
and potential energy will be 0
So total energy at the bottom of the hill is equal to 
Form energy conservation 
, for v = 20 m/sec

Squaring both side

h = 20.408 m
Now if velocity is 0 m/sec


h = 81.63 m
So we can see that to achieve the velocity of 40 m/sec height will become 4 times
Answer:
a) 0.0288 grams
b) 
Explanation:
Given that:
A typical human body contains about 3.0 grams of Potassium per kilogram of body mass
The abundance for the three isotopes are:
Potassium-39, Potassium-40, and Potassium-41 with abundances are 93.26%, 0.012% and 6.728% respectively.
a)
Thus; a person with a mass of 80 kg will posses = 80 × 3 = 240 grams of potassium.
However, the amount of potassium that is present in such person is :
0.012% × 240 grams
= 0.012/100 × 240 grams
= 0.0288 grams
b)
the effective dose (in Sieverts) per year due to Potassium-40 in an 80- kg body is calculate as follows:
First the Dose in (Gy) = 
= 
= 
Effective dose (Sv) = RBE × Dose in Gy
Effective dose (Sv) = 
Effective dose (Sv) = 
The rotational effect of a force is called torque.it is the cause of rotation or angular deceleration
τ=rXF
where
τ = F r sin @
hope it helps