1st Law: Objects that are in motion tend to stay in motion. This motion can change with external forces.
<span>If you were to stop pedaling on bike while in motion, you will notice that you will keep moving. This is because a moving body (you) has inertia. If there wasn't any friction between the tires and the ground, between the axles and wheel, any air resistance, or any other force that acts against you, then you could be coasting indefinitely! </span>
<span>2nd Law: Force is equal to the mass times acceleration. </span>
<span>When you pedal, you are applying a force onto the pedal. This force is then translated through tension to apply torque onto the wheel. Turning the wheel will make you accelerate in the lateral direction. </span>
<span>3rd Law: For every action, there is an equal and opposite reaction. </span>
<span>Without this, you could pedal and pedal, but you will be not go anywhere! It is essentially the friction between the tires and the ground that propels you forward. If the ground did not apply to the tire the same amount of force that the tire was applying to the ground, the tire would not "catch" and no friction would be applied. And if there was no third law, the weight of you and your bike would "sink" into the ground because the ground would not be applying a normal force back onto you.
hope this helps and if you have any questions just hmu and ask :)</span>
The quantity work has to do with a force causing a displacement. Work has nothing to do with the amount of time that this force acts to cause the displacement. Sometimes, the work is done very quickly and other times the work is done rather slowly. For example, a rock climber takes an abnormally long time to elevate her body up a few meters along the side of a cliff. On the other hand, a trail hiker (who selects the easier path up the mountain) might elevate her body a few meters in a short amount of time. The two people might do the same amount of work, yet the hiker does the work in considerably less time than the rock climber. The quantity that has to do with the rate at which a certain amount of work is done is known as the power. The hiker has a greater power rating than the rock climber.
Power is the rate at which work is done. It is the work/time ratio. Mathematically, it is computed using the following equation.
Power = Work / time
or
P = W / t
Given that, A basesball is dropped from 100 meters above the surface of the earth. If the same baseball was dropped from 100 meters above the surface of the moon, it will take more time to hit the ground as compare to the ball dropped on earth. This is moon's gravity is one-sixth of that of earth. Object falling on earth possess more force of attraction. So it will reach the earth in lesser time. At moon the force of attraction is low compare to that of earth. Object will take more time to reach the surface.
There are two equal forces of gravity between the Earth and the Moon.
One force pulls the Moon toward the Earth.
The other force pulls the Earth toward the Moon.
If only this gravity suddenly switched off, then the moon would
continue to orbit the Sun, very much as it does now.
If ALL gravity suddenly switched off, then . . .
-- the Moon would stop orbiting the Earth and would sail away, in
a straight line and at the speed it had when gravity disappeared;
-- the Earth would stop orbiting the Sun and would sail away, in
a straight line and at the speed it had when gravity disappeared;
-- all the gases surrounding the Earth ... which we call "air" ... would
start drifting away, and expanding into a giant cloud of gas, and stop
being an atmosphere;
-- the Sun would completely fall apart, expand into a giant cloud of gas,
and stop being a star.
Answer:
There are six major nutrients: Carbohydrates (CHO), Lipids (fats), Proteins, Vitamins, Minerals, Water.
Explanation: