Answer:
Explanation:
- The expression for acceleration of the rolling body on an inclined plane is given as a = gsinФ/1 + k²/R²
- where Ф is the angle of inclination, R is the radius, k is the radius of gyration.
- The potential energy of the system is given as ; PE = mgh
- The potential energy will be constant for ring, cylinder, solid sphere, and hollow sphere.
- The total kinetic energy of the rolling body is ; KE = mv²/2 + Iw²/2
- Hence, the total kinetic energy of the ring, cylinder, solid sphere and hollow sphere will be constant.
2. The moment of inertia of the ring is given as ;
I = mR²
The moment of inertia of the ring is maximum and therefore reaches the bottom last.
Answer:
3000 J
Explanation:
Kinetic energy is:
KE = ½ mv²
If m = 15 kg and v = -20 m/s:
KE = ½ (15 kg) (-20 m/s)²
KE = 3000 J
According to Newton's second law of motion, Force is the product of mass and acceleration of the object.
So, F = m * a
Here, m = 210 Kg
a = 2.4 * 10⁵ m/s²
Substitute their values,
F = 210 * 2.4 * 10⁵ N
F = 504 * 10⁵ N
F = 5.04 * 10⁷ N
In short, Your Answer would be Option B
Hope this helps!
Answer:
It happens due to force of friction
Explanation:
If a body is performing a uniform motion and no external unbalanced force appears to apply on it, then the body will come to rest after certain time. The reason behind this is the force of friction that is applied in opposite direction of the motion. So, when there is no apparent unbalanced force it means that the only force acting on the body is the force of friction. This force of friction tends to stop the motion after some period of time, because it is acting in the direction opposite to that of motion.
Hence, the reason behind a body undergoing uniform motion eventually stops is <u>Force of Friction.</u>