Answer:
f) a[n] = -(-2)^n +2^n
g) a[n] = (1/2)((-2)^-n +2^-n)
Step-by-step explanation:
Both of these problems are solved in the same way. The characteristic equation comes from ...
a[n] -k²·a[n-2] = 0
Using a[n] = r^n, we have ...
r^n -k²r^(n-2) = 0
r^(n-2)(r² -k²) = 0
r² -k² = 0
r = ±k
a[n] = p·(-k)^n +q·k^n . . . . . . for some constants p and q
We find p and q from the initial conditions.
__
f) k² = 4, so k = 2.
a[0] = 0 = p + q
a[1] = 4 = -2p +2q
Dividing the second equation by 2 and adding the first, we have ...
2 = 2q
q = 1
p = -1
The solution is a[n] = -(-2)^n +2^n.
__
g) k² = 1/4, so k = 1/2.
a[0] = 1 = p + q
a[1] = 0 = -p/2 +q/2
Multiplying the first equation by 1/2 and adding the second, we get ...
1/2 = q
p = 1 -q = 1/2
Using k = 2^-1, we can write the solution as follows.
The solution is a[n] = (1/2)((-2)^-n +2^-n).
The <em>quadratic</em> function g(x) = (x - 5)² + 1 passes through the points (2, 10) and (8, 10) and has a vertex at (5, 1).
<h3>How to analyze quadratic equations</h3>
In this question we have a graph of a <em>quadratic</em> equation translated to another place of a <em>Cartesian</em> plane, whose form coincides with the <em>vertex</em> form of the equation of the parabola, whose form is:
g(x) = C · (x - h)² - k (1)
Where:
- (h, k) - Vertex coordinates
- C - Vertex constant
By direct comparison we notice that (h, k) = (5, 1) and C = 1. Now we proceed to check if the points (x, y) = (2, 10) and (x, y) = (8, 10) belong to the parabola.
x = 2
g(2) = (2 - 5)² + 1
g(2) = 10
x = 8
g(8) = (8 - 5)² + 1
g(8) = 10
The <em>quadratic</em> function g(x) = (x - 5)² + 1 passes through the points (2, 10) and (8, 10) and has a vertex at (5, 1).
To learn more on parabolae: brainly.com/question/21685473
#SPJ1
Answer:
62.8 m^2
Step-by-step explanation:
The volume of a cylinder is given by
V = pi r^2 h where r is the radius and h is the height
V = (3.14) ( 2)^2 *5
V = 62.8 m^2
Answer:
y = 3x - 8
Step-by-step explanation:
Line is passing through the points (2, - 2) & (0, - 8)
Slope of line
