A: is the answer that the one u click
Answer:
Step-by-step explain
Find the horizontal asymptote for f(x)=(3x^2-1)/(2x-1) :
A rational function will have a horizontal asymptote of y=0 if the degree of the numerator is less than the degree of the denominator. It will have a horizontal asymptote of y=a_n/b_n if the degree of the numerator is the same as the degree of the denominator (where a_n,b_n are the leading coefficients of the numerator and denominator respectively when both are in standard form.)
If a rational function has a numerator of greater degree than the denominator, there will be no horizontal asymptote. However, if the degrees are 1 apart, there will be an oblique (slant) asymptote.
For the given function, there is no horizontal asymptote.
We can find the slant asymptote by using long division:
(3x^2-1)/(2x-1)=(2x-1)(3/2x+3/4-(1/4)/(2x-1))
The slant asymptote is y=3/2x+3/4
Answer:
33.3
Step-by-step explanation:
The value of
such that the line
is tangent to the parabola
is
.
If
is a line <em>tangent</em> to the parabola
, then we must observe the following condition, that is, the slope of the line is equal to the <em>first</em> derivative of the parabola:
(1)
Then, we have the following system of equations:
(1)
(2)
(3)
Whose solution is shown below:
By (3):

(3) in (2):
(4)
(4) in (1):



The value of
such that the line
is tangent to the parabola
is
.
We kindly invite to check this question on tangent lines: brainly.com/question/13424370