To determine the strength of potassium permanganate with a standard solution of oxalic acid.
<h3>
Answer:</h3>
733 g CO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2C₃H₇OH + 9O₂ → 6CO₂ + 8H₂O
[Given] 5.55 mol C₃H₇OH
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol C₃H₇OH → 6 CO₂
Molar Mass of C - 12.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of CO₂ - 12.01 + 2(16.00) = 44.01 g/mol
<u>Step 3: Stoichiometry</u>
- Set up conversion:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
732.767 g CO₂ ≈ 733 g CO₂
Answer:
187.34 atm
Explanation:
From the question,
PV = nRT.................. Equation 1
Where P = Pressure, V = Volume, n = number of mole, R = molar gas constant, T = Temperature.
make P the subject of the equation
P = nRT/V.............. Equation 2
n = mass(m)/molar mass(m')
n = m/m'............... Equation 3
Substitute equation 3 into equation 2
P = (m/m')RT/V............ Equation 4
Given: m = 46 g, T = 25°C = (25+273) = 298 K, V = 3.00 L
Constant: m' = 2 g/mol, R = 0.082 atmL/K.mol
Substitute these values into equation 4
P = (46/2)(0.082×298)/3
P = (23×0.082×298)/3
P = 187.34 atm
They are each a source of light like the sub
d) T3 and T4. T3 and T4 are poorly soluble in water, and more than 99% of the T3 and T4 circulating in blood is bound to carrier proteins. The main carrier of thyroid hormones is thyroxine-binding globulin, a glycoprotein synthesized in the liver.