Metal conductivity generally goes down or resistivity goes up with temperature goes up.
In a solid, molecules are packed together, and it keeps its shape. Liquids take the shape of the container. Gases spread out to fill the container. Solid is one of the three main states of matter, along with liquid and gas.
Hope that helps!
The scientific notation for 8,950,000 is
8.95 × 10^6
Answer:
The concentration of KOH is 0.186 M
Explanation:
First things first, we need too write out the balanced equation between HBr and KOH.
This is given as;
KOH (aq) + HBr (aq) → KBr (aq) + H2O (l)
From the reaction above, we can tell that it takes 1 mole of KOH to react with 1 mole of HBr.
We use the acid base formular in calculating unknown concentrations. This is given as;

where;
Ca = Concentration of acid
Va = Volume of acid
Cb = Concentration of base
Vb = Volume of base
na = Number of moles of acid
nb = Number of moles of base
KOH is the base and HBr is acid.
Hence;
Ca = 0.225
Va = 35
Cb = ?
Vb = 42.3
na = 1
nb = 1
Making Cb subject of formular we have;

Cb = (0.225 * 35 * 1) / (42.3 * 1)
Cb = 0.186 M
Answer:
See explanation below
Explanation:
First, we need to understand that the monochlorination of an alkane like this one, involves substitution of one of the atoms of hydrogen of the molecule for an atom of chlorine.
This reaction takes place when the alkane reacts with Cl₂ in presence of light or heat.
When this happens, the first step involves the breaking of the double bond of the chlorine to form the ion Cl⁻.
The next step involves the substraction of the hydrogen of the molecule by the Chlorine. This will leave the alkane with a lone pair available for reaction.
The third step, the alkane with the lone pair of electron substract a chlorine for the beggining and form the mono chlorinated product.
The final step involves forming the remaining products with the remaining reagents there.
In the picture attached you have the mechanism and product for this reaction: