1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stellarik [79]
3 years ago
15

Evaluate the expression, if possible: √ 64

Mathematics
1 answer:
astraxan [27]3 years ago
7 0

The square root of a number is the smallest (positive) number possible that when multiplied by it self equals the number in the square root.

The square root of 64 is 8 ( 8 x 8 = 64).

The answer is B.

You might be interested in
Please help with this
Setler [38]

Answer:

x = 6

Step-by-step explanation:

The scale factor is

28/8 = 7/2

We take the ratio of the larger side over the smaller side

Using ratios we can find the sides

28         21

----- = ---------

8           x

Using cross products

28x = 21*8

28x =168

Divide each side by 28

28x/28 = 168/28

x =6

7 0
3 years ago
I have 10 dollars and my brother has 25 dollars. How much will I have if he gives me 15 dollars?
kotykmax [81]

you will have 25 dollars 10+15=25

4 0
3 years ago
Read 2 more answers
Help help please please
gtnhenbr [62]

✽ Hello there! ✽

4x+9<21  

Move all the constants (numbers) to the right, using the opposite                         operation:

4x<21-9

4x<12

Divide both sides by 4 to isolate x:

x<3

<h2>Therefore, x<3 ✔︎</h2>

Hope this helps!

~Just a felicitous girlie

#HaveASplendidDay

SilentNature

8 0
2 years ago
Need help simplifying this
diamong [38]

The simplified answer is \frac{\left(12 x^{2}+7 x y-4 y z-3 x z+3 y^{2}\right)}{6 x^{2}+3 x z+2 x y+y z}.

<u>Step-by-step explanation:</u>

$\frac{3 y+2 x}{z+2 x}-\frac{2 y-3 x}{3 x+y}-\frac{2 z(y+3 x)}{6 x^{2}+3 x z+2 x y+y z}

To add or subtract denominators of the fraction must be same.

If it is not the same, we must take LCM of the denominators. and so we can add the fractions.

To make the denominator same multiply the 1st term (\frac{3x+y}{3x+y}) and 2nd term by (\frac{z+2x}{z+2x})

= \frac{(3 y+2 x)(3 x+y)}{(z+2 x)(3 x+y)}-\frac{(2 y-3 x)(z+2 x)}{(3 x+y)(z+2 x)}-\frac{2 z(y+3 x)}{6 x^{2}+3 x z+2 x y+y z}

LCM of the denominators is 6x²+ 3xz + 2xy +yz.

Multiply the factors in the numerator.

= \frac{\left(6 x^{2}+3 y^{2}+11 x y\right)}{(z+2 x)(3 x+y)}-\frac{\left(2 y z+4 x y-3 x z-6 x^{2}\right)}{(3 x+y)(z+2 x)}-\frac{2 z y+6 x z}{6 x^{2}+3 x z+2 x y+y z}

Now, the denominators are same, you can subtract it.

= \frac{\left(6 x^{2}+6 x^{2}+11 x y-4 x y-2 y z-2 y z+3 x z-6 x z+3 y^{2}\right)}{6 x^{2}+3 x z+2 x y+y z}

= \frac{\left(12 x^{2}+7 x y-4 y z-3 x z+3 y^{2}\right)}{6 x^{2}+3 x z+2 x y+y z}

Thus the simplified solution is  \frac{\left(12 x^{2}+7 x y-4 y z-3 x z+3 y^{2}\right)}{6 x^{2}+3 x z+2 x y+y z}

4 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Rewrite the equation below in slope-intercept form.<br><br> 2y−8x=18
    11·2 answers
  • Use the graph below to estimate the solution to the system of equations shown.
    6·1 answer
  • If secant theta equals 25/24 find cotangent theta
    15·2 answers
  • Maggie colors a figure in the shape of a trapezoid. The trapezoid is 6 inches tall. The bases are 4.5 inches and 8 inches, What
    9·1 answer
  • Plz help me with this question
    9·2 answers
  • WILL MARK BRAINIEST The dimensions of a rectangle are 8 1/2
    5·1 answer
  • Felipe is saving money to buy a game. So far he has saved $30, which is five-sixths of the total cost of the game. How much does
    7·1 answer
  • NEED HELP ASAP WILL GIVE BRAINLIEST
    13·2 answers
  • A random survey of enrollment at 35 community colleges across the United States yielded the following figures:
    7·1 answer
  • If f(x) = 5x2 - 3x , what is f(-3)
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!