1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLEGan [10]
3 years ago
9

HELP mejdjdjdbdbdhdhdhdhdhdgdhdhdhdhdhdhdhdhdhdhdhdhdh

Mathematics
1 answer:
Bess [88]3 years ago
7 0

A. y=0.5x+2

Sorry if I didnt answer this soon enough!

hdhhejfkfjjskdjjfkdjnsnsnsma

You might be interested in
Please help me it’s probably easy for you guys but I love you guysss!! <3
krok68 [10]

Answer:

i dont know u

Step-by-step explanation:

8 0
2 years ago
Find the simultaneous equation x-2y=1,y^2-3xy+8=0​
Hitman42 [59]

Answer:

  (-2.2, -1.6), (3, 1)

Step-by-step explanation:

You don't have to go far to find the equations. They are right there in your problem statement. Perhaps you want to find the solutions to the equations.

Use the first equation to write an expression for x, then substitute that into the second equation:

  x = 2y +1

  y^2 -3(2y+1)(y) +8 = 0

  -5y^2 -3y +8 = 0

  -(5y +8)(y -1) = 0

  y = -8/5   or   y = 1

The corresponding values of x are ...

  x = 2(-8/5)+1 = -11/5

  x = 2(1) +1 = 3

The solutions are (x, y) = (-2.2, -1.6) and (3, 1).

5 0
2 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
2 years ago
Read 2 more answers
Pleaseee help with this! Giving 60 points!
Sonja [21]

Answer:

X = 2, -8

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
Solve the given differential equation by separation of variables. csc(y) dx sec2(x) dy
Elden [556K]
Try this solution:
dx/siny=dy/cos2x;
sinydy=cos2xdx;
cosy=-1/2 sin2x+C.
3 0
3 years ago
Other questions:
  • Can someone help me with these questions
    15·1 answer
  • Enter an algebraic equation for the sentence. Use x as your variable.
    13·1 answer
  • What is 90* 1000 then - 8 * 40
    13·2 answers
  • Hank drove 1200 miles per hour in 12.5 hours. What is his average speed in miles per hour
    8·1 answer
  • Solve the problem. Help quick
    6·1 answer
  • Y = 5x - 8<br> y = 4x - 7
    13·1 answer
  • I need help with my math! It is Rules of exponents. Can anyone help me?
    8·1 answer
  • Simplify the number into simplest radical form. Use the factor tree to help determine the factors. StartRoot 96 Endroot StartRoo
    8·2 answers
  • Solve the system of equations below algebraically.<br> 2x + 3y = 6<br> - 5x+2y=4
    10·1 answer
  • What is the value of x in the triangle below?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!