Answer:
0.17  0.096
 0.096
Step-by-step explanation:
We are given that Researchers are interested in determining whether more men than women prefer Coca Cola to Pepsi.
For this, In a random sample of 300 men, 65% prefer Coca Cola, whereas in a random sample of 400 women, 48% prefer Coca Cola.
The pivotal quantity for confidence interval is given by;
               P.Q. =  ~ N(0,1)
 ~ N(0,1) 
where,    = 0.65
 = 0.65         = 0.48
 = 0.48 
                = 300
 = 300          = 400
 = 400 
So, 99% confidence interval for the difference between the percentages of men and women who prefer Coca Cola over Pepsi is given by;
  P(-2.5758 < N(0,1) < 2.5758) = 0.99 {At 1% significance level, the z table 
                                                               gives value of 2.5758}
 P(-2.5758 <  < 2.5758) = 0.99
 < 2.5758) = 0.99 
 P(-2.5758 *  <
<  < 2.5758 *
 < 2.5758 *  ) = 0.99
 ) = 0.99
 P( - 2.5758 *
 - 2.5758 *  <
 <  <
 <  + 2.5758 *
 + 2.5758 *  ) = 0.99
 ) = 0.99
So, 99% confidence interval for  =
 = 
 [  - 2.5758 *
 - 2.5758 *  ,
 ,  + 2.5758 *
 + 2.5758 *  ]
 ]
= [ (0.65 - 0.48) - 2.5758 *  ,  (0.65 - 0.48) + 2.5758 *
 ,  (0.65 - 0.48) + 2.5758 *  ]
 ]
= [ 0.17 - 2.5758 *  , 0.17 + 2.5758 *
 , 0.17 + 2.5758 *  ]
 ]
= [ 0.17 - 0.096 , 0.17 + 0.096 ] = [0.17  0.096]
 0.096]
Therefore, 99% confidence interval for the difference between the percentages of men and women who prefer Coca Cola over Pepsi is 0.17 ± 0.096 .