1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vsevolod [243]
3 years ago
5

Researchers are interested in determining whether more men than women prefer Coca Cola to Pepsi. In a random sample of 300 men,

65% prefer Coca Cola, whereas in a random sample of 400 women, 48% prefer Coca Cola. What is the 99% confidence interval estimate for the difference between the percentages of men and women who prefer Coca Cola over Pepsi? 0.17 ± 0.036 0.17 ± 0.096 0.17 ± 0.067 0.565 ± 0.067 0.565 ± 0.096
Mathematics
2 answers:
kobusy [5.1K]3 years ago
6 0

Answer: 0.17 ± 0.096

Step-by-step explanation:

Confidence interval for difference between the population proportion :

p_1-p_2\pm z^*\sqrt{\dfrac{p_1(1-p_1)}{n_1}+\dfrac{p_2(1-p_2)}{n_2}}

, where p_1 = sample proportion for population 1.

 p_2 = sample proportion for population 2.

n_1 = Sample size from population 1.

n_2 = Sample size from population 1.

As per given , we have

Population

p_1=0.65\ \ \& \ \ p_2=0.48

n_1=300\ \ \ \&\ \ n_2=400

Critical z-value for 99% confidence level is z*=2.576  [By z-table]

Now , the 99% confidence interval estimate for the difference between the percentages of men and women who prefer Coca Cola over Pepsi :

(0.65-0.48)\pm (2.576)\sqrt{\dfrac{(0.65)(1-0.65)}{300}+\dfrac{(0.48)(1-0.48)}{400}}\\\\= 0.17\pm(2.576)\sqrt{0.0007583+0.000624}\\\\=0.17\pm(2.576)\sqrt{0.0013823}\\\\=0.17\pm(2.576)(0.03718)\\\\=0.17\pm0.09577568\\\\\approx0.17\pm0.096\

Hence, the correct answer is 0.17 ± 0.096.

Mekhanik [1.2K]3 years ago
6 0

Answer:

0.17 \pm 0.096

Step-by-step explanation:

We are given that Researchers are interested in determining whether more men than women prefer Coca Cola to Pepsi.

For this, In a random sample of 300 men, 65% prefer Coca Cola, whereas in a random sample of 400 women, 48% prefer Coca Cola.

The pivotal quantity for confidence interval is given by;

              P.Q. = \frac{(\hat p_1 - \hat p_2)-(p_1 - p_2)}{\sqrt{\frac{\hat p_1(1- \hat p_1)}{n_1} + \frac{\hat p_2(1- \hat p_2)}{n_2} } } ~ N(0,1)

where,   \hat p_1 = 0.65        \hat p_2 = 0.48

              n_1 = 300         n_2 = 400

So, 99% confidence interval for the difference between the percentages of men and women who prefer Coca Cola over Pepsi is given by;

 P(-2.5758 < N(0,1) < 2.5758) = 0.99 {At 1% significance level, the z table

                                                              gives value of 2.5758}

P(-2.5758 < \frac{(\hat p_1 - \hat p_2)-(p_1 - p_2)}{\sqrt{\frac{\hat p_1(1- \hat p_1)}{n_1} + \frac{\hat p_2(1- \hat p_2)}{n_2} } } < 2.5758) = 0.99

P(-2.5758 * \sqrt{\frac{\hat p_1(1- \hat p_1)}{n_1} + \frac{\hat p_2(1- \hat p_2)}{n_2} }< (\hat p_1 - \hat p_2)-(p_1 - p_2) < 2.5758 * \sqrt{\frac{\hat p_1(1- \hat p_1)}{n_1} + \frac{\hat p_2(1- \hat p_2)}{n_2} } ) = 0.99

P((\hat p_1 - \hat p_2) - 2.5758 * \sqrt{\frac{\hat p_1(1- \hat p_1)}{n_1} + \frac{\hat p_2(1- \hat p_2)}{n_2} } < (p_1 - p_2) < (\hat p_1 - \hat p_2) + 2.5758 * \sqrt{\frac{\hat p_1(1- \hat p_1)}{n_1} + \frac{\hat p_2(1- \hat p_2)}{n_2} } ) = 0.99

So, 99% confidence interval for (p_1 - p_2) =

[ (\hat p_1 - \hat p_2) - 2.5758 * \sqrt{\frac{\hat p_1(1- \hat p_1)}{n_1} + \frac{\hat p_2(1- \hat p_2)}{n_2} } , (\hat p_1 - \hat p_2) + 2.5758 * \sqrt{\frac{\hat p_1(1- \hat p_1)}{n_1} + \frac{\hat p_2(1- \hat p_2)}{n_2} } ]

= [ (0.65 - 0.48) - 2.5758 * \sqrt{\frac{0.65(1- 0.65)}{300} + \frac{0.48(1- 0.48)}{400} } ,  (0.65 - 0.48) + 2.5758 * \sqrt{\frac{0.65(1- 0.65)}{300} + \frac{0.48(1- 0.48)}{400} } ]

= [ 0.17 - 2.5758 * \sqrt{\frac{0.65(1- 0.65)}{300} + \frac{0.48(1- 0.48)}{400} } , 0.17 + 2.5758 * \sqrt{\frac{0.65(1- 0.65)}{300} + \frac{0.48(1- 0.48)}{400} } ]

= [ 0.17 - 0.096 , 0.17 + 0.096 ] = [0.17 \pm 0.096]

Therefore, 99% confidence interval for the difference between the percentages of men and women who prefer Coca Cola over Pepsi is 0.17 ± 0.096 .

     

You might be interested in
f(x) = 4x^2+2x+6f(x)=4x 2 +2x+6f, left parenthesis, x, right parenthesis, equals, 4, x, squared, plus, 2, x, plus, 6 What is the
vladimir2022 [97]

<u>Given</u>:

The given function is f(x)=4x^2+2x+6

We need to determine the value of the discriminant f and also to determine the distinct real number zeros of f.

<u>Discriminant</u>:

The discriminant can be determined using the formula,

\Delta = b^2-4ac

Now, we shall determine the discriminant of the function f(x)=4x^2+2x+6

Substituting the values in the formula, we have;

\Delta=(2)^2-4(4)(6)

\Delta=4-96

\Delta=-92

Thus, the value of the discriminant of f is -92.

<u>Distinct roots:</u>

The distinct zeros of the function f can be determined by

(1) If \Delta>0, then the function has 2 real roots.

(2) If \Delta=0, then the function has 2 real roots ( or one repeated root).

(3) If \Delta, then the function has 2 imaginary roots (or no real roots).

Since, the discriminant is \Delta=-92 \ < \ 0 , then the function has no real roots  or 2 imaginary roots.

Thus, the function has 2 imaginary roots.

4 0
4 years ago
What is 23.4 x 0.4 equals
Hunter-Best [27]
9.36 is what it equals
5 0
3 years ago
Read 2 more answers
Suppose there is a bag containing 5 red marbles ​(Upper R​), 5 pink marbles ​(Upper P​), 5 green marbles ​(Upper G​), and 5 blac
Radda [10]

Answer:

In the Explanation

Step-by-step explanation:

(a)From the attached probability tree, the possible outcomes are:

RR,RP,RG,RB,PR,PP,PG,PB,GR,GP,GB,GG,BR,BP,BG,BB

(b)Probability Distribution of Drawing Pink Marbles

\left|\begin{array}{c|c}Result&Probability\\----&----\\0&\frac{9}{16}\\----&---\\1& \frac{3}{8}\\----&---\\2&\frac{1}{16}\end{array}\right|

3 0
3 years ago
A student solved log4(2x – 12) = 3, as shown. Which did you include in your answer?
siniylev [52]

Answer:

x = 38

Step-by-step explanation:

using the law of logarithms

• log_{b} x = n ⇔ x = b^{n}, hence

log_{4}(2x - 12) = 3 ⇒ 2x - 12 =  4^{3} = 64

add 12 to both sides

2x = 76 ( divide both sides by 2 )

x = 38


5 0
4 years ago
Helppppppppppppppppppp
Ymorist [56]
#9: 1 and 1 seventh

#10:   1.23

#11:   0.35
6 0
3 years ago
Other questions:
  • I need 5 6 and 8 thank you
    6·1 answer
  • Pic need help plz !!!!
    14·2 answers
  • 2<br>Find the perimeter and area of this shape.<br>1 cm<br>NOT TO<br>SCALE<br>6 cm<br>1 cm<br>9 cm​
    6·1 answer
  • Solve for the variable<br> (x + 18)°<br> 48°
    6·1 answer
  • Give the exact form and decimal form of the equation
    6·1 answer
  • 3. A $50 pair of shoes is discounted by 15% What will be the new<br> price of the shoes?
    14·1 answer
  • I need help asap pls!!
    5·1 answer
  • I’ll mark brainliest if correct lol
    12·2 answers
  • A brand of uncooked spaghetti comes in a box that is a rectangular prism with a length of 9 inches, a width of 3 inches, and a h
    11·1 answer
  • Can you please help me find X in this problem it is so confusing
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!