They can share electrons. By sharing, they form a covalent Bond and that way atoms can be stable.
B. Extra text to get to 20 characters.
Fnet = (mass) (acceleration)
= 11 kg x 3.7m/s^2
= 41 N
Answer:
distance between the dime and the mirror, u = 0.30 m
Given:
Radius of curvature, r = 0.40 m
magnification, m = - 2 (since,inverted image)
Solution:
Focal length is half the radius of curvature, f = 
f = 
Now,
m = - 
- 2 = -
= 2 (2)
Now, by lens maker formula:


v =
(3)
From eqn (2):
v = 2u
put v = 2u in eqn (3):
2u = 
2 = 
2(u - 0.20) = 0.20
u = 0.30 m
Answer: 3 radians/meter.
Explanation:
The general sinusoidal function will be something like:
y = A*sin(k*x - ω*t) + C
Where:
A is the amplitude.
k is the wave number.
x is the spatial variable
ω is the angular frequency
t is the time variable.
C is the mid-value.
The rule that we can use to solve this problem, is that the argument of the sin( ) function must be in radians (or in degrees)
Then if x is in meters, the wave-number must be in radians/meters, so when these numbers multiply the "meters" part is canceled.
Then for the case of the function:
y(x,t) = 0.1 sin(3x + 10t)
Where x is in meters, the units of the wave number (the 3) must be in radians/meters. Then the angular wave number is 3 radians/meter.