B is the right answer glad I could help !!
Answer:
Yes
Explanation:
Any transparent surface in practical is neither a perfect absorber of electromagnetic waves neither a perfect reflector. Generally all the transparent surfaces reflect some amount of irradiation and the other parts are absorbed and transmitted.
<u>That is given by as relation:</u>

where:
absorptivity which is defined as the ratio of the absorbed radiation to the total irradiation
reflectivity is defined as the ratio of reflected radiation to the total irradiation
transmittivity is defined as the ratio of total transmitted radiation to the total irradiation
Answer:
ω₂=1.20
Explanation:
Given that
mass of the turn table ,M= 15 kg
mass of the ice ,m= 9 kg
radius ,r= 25 cm
Initial angular speed ,ω₁ = 0.75 rad/s
Initial mass moment of inertia



Final mass moment of inertia



Lets take final speed of the turn table after ice evaporated =ω₂ rad/s
Now by conservation angular momentum
I₁ ω₁ =ω₂ I₂

ω₂=1.20
Using a punnet square,
h h
H Hh Hh
h hh hh
The offspring will be 50% Heterozygous dominant and 50% homozygous recessive.
I would rather be hit by the deflated ball because it wouldn't hurt as bad because it wouldn't have a lot of weight to hurt me in anyway