Answer:
(a) 42.28°
(b) 37.08°
Explanation:
From the principle of refraction of light, when light wave travels from one medium to another medium, we have:
= sinθ
/sinθ
In the given problem, we are given the refractive indices of light which are parallel and perpendicular to the axis of the optical lens as 1.4864 and 1.6584 respectively.
For critical angle θ
= θ
, θ
= 90°; 
(a) 
= sinθ
/sin90°
0.6728 = sinθ![_{c}θ[tex]_{c} = sin^(-1) 0.6728 = 42.28°(b) [tex]n_{a} = 1.6584](https://tex.z-dn.net/?f=_%7Bc%7D%3C%2Fp%3E%3Cp%3E%CE%B8%5Btex%5D_%7Bc%7D%20%3D%20sin%5E%28-1%29%200.6728%20%3D%2042.28%C2%B0%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%28b%29%20%5Btex%5Dn_%7Ba%7D%20%3D%201.6584)
= sinθ
/sin90°
0.60299 = sinθ[tex]_{c}
θ[tex]_{c} = sin^(-1) 0.60299 = 37.08°
If the intelligent aliens on that distant planet could receive our signal, and then reply to us INSTANTLY with no delay, then our Scientists on Earth would hear the response <em>eight years after</em> they sent their original greeting.
Light and radio waves both travel through space at the same speed. If our scientists sent a radio transmission to that distant planet, it would take four years for the radio message to get there and be heard. Any response would take four years to travel back to us. If the aliens didn't dilly-dally and sent their response immediately, the round trip would total up to eight years.
Answer:
the force acting on the team mate is 1.19 kN.
Explanation:
given,
mass = 196 lbm
while tackling, the deceleration is from velocity 6.7 m/s to 0 m/s
time taken for deceleration = 0.5 sec
F = mass × acceleration
acceleration =
= -13.4 m/s²
1 lbs = 0.453 kg
196 lbs = 196 × 0.453 = 88.79 kg
F = 88.79 × 13.4
F = 1189.786 N = 1.19 kN
hence, the force acting on the team mate is 1.19 kN.
I think the answer is B because I did this before