Triangles BAD and BCD are congruent by the HL theorem. That is, they have identical length hypotenuses (BD) and one leg is also identical in length to that in the other triangle. (AD ≅ CD)
Since the triangles are congruent, corresponding angles are equal, so ∠CBD = ∠ABD = 28°. The angle you are interested in is the sum of these two angles,
... ∠ABC = 28°+28° = 56°
Answer:
D = 8y-15
Step-by-step explanation:
-y-9y-15 than combine -y and -9y
so = 8y-15
Answer:
See Explanation.
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Distributive Property
- Equality Properties
<u>Algebra I</u>
- Combining Like Terms
- Factoring
<u>Calculus</u>
- Derivative 1:
![\frac{d}{dx} [e^u]=u'e^u](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Be%5Eu%5D%3Du%27e%5Eu)
- Integration Constant C
- Integral 1:

- Integral 2:

- Integral 3:

- Integral Rule 1:

- Integration by Parts:

- [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig
Step-by-step Explanation:
<u>Step 1: Define Integral</u>

<u>Step 2: Identify Variables Pt. 1</u>
<em>Using LIPET, we determine the variables for IBP.</em>
<em>Use Int Rules 2 + 3.</em>

<u>Step 3: Integrate Pt. 1</u>
- Integrate [IBP]:

- Integrate [Int Rule 1]:

<u>Step 4: Identify Variables Pt. 2</u>
<em>Using LIPET, we determine the variables for the 2nd IBP.</em>
<em>Use Int Rules 2 + 3.</em>

<u>Step 5: Integrate Pt. 2</u>
- Integrate [IBP]:

- Integrate [Int Rule 1]:

<u>Step 6: Integrate Pt. 3</u>
- Integrate [Alg - Back substitute]:
![\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]](https://tex.z-dn.net/?f=%5Cint%20%7Be%5E%7Bau%7Dsin%28bu%29%7D%20%5C%2C%20du%20%3D%20%5Cfrac%7B-e%5E%7Bau%7Dcos%28bu%29%7D%7Bb%7D%20%2B%20%5Cfrac%7Ba%7D%7Bb%7D%20%5B%5Cfrac%7Be%5E%7Bau%7Dsin%28bu%29%7D%7Bb%7D%20-%20%5Cfrac%7Ba%7D%7Bb%7D%20%5Cint%20%28%7Be%5E%7Bau%7D%20sin%28bu%29%7D%29%20%5C%2C%20du%5D)
- [Integral - Alg] Distribute Brackets:

- [Integral - Alg] Isolate Original Terms:

- [Integral - Alg] Rewrite:

- [Integral - Alg] Isolate Original:

- [Integral - Alg] Rewrite Fraction:

- [Integral - Alg] Combine Like Terms:

- [Integral - Alg] Divide:

- [Integral - Alg] Multiply:
![\int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]](https://tex.z-dn.net/?f=%5Cint%20%7Be%5E%7Bau%7Dsin%28bu%29%7D%20%5C%2C%20du%20%3D%20%5Cfrac%7B1%7D%7Ba%5E2%2Bb%5E2%7D%20%5Bae%5E%7Bau%7Dsin%28bu%29%20-%20be%5E%7Bau%7Dcos%28bu%29%5D)
- [Integral - Alg] Factor:
![\int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]](https://tex.z-dn.net/?f=%5Cint%20%7Be%5E%7Bau%7Dsin%28bu%29%7D%20%5C%2C%20du%20%3D%20%5Cfrac%7Be%5E%7Bau%7D%7D%7Ba%5E2%2Bb%5E2%7D%20%5Basin%28bu%29%20-%20bcos%28bu%29%5D)
- [Integral] Integration Constant:
![\int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C](https://tex.z-dn.net/?f=%5Cint%20%7Be%5E%7Bau%7Dsin%28bu%29%7D%20%5C%2C%20du%20%3D%20%5Cfrac%7Be%5E%7Bau%7D%7D%7Ba%5E2%2Bb%5E2%7D%20%5Basin%28bu%29%20-%20bcos%28bu%29%5D%20%2B%20C)
And we have proved the integration formula!
Cube has 6 faces that are square
area of square=side^2
side=8
SA=6s^2
SA=6(8^2)
SA=6(64)
SA=384 ft^2
Answer: they are all similar
Step-by-step explanation: they all are the same shape no matter how long or tall they are