1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blagie [28]
3 years ago
12

Rectangle ABCD has four right angles. 1. What is the sum of its angle measures?

Mathematics
2 answers:
sasho [114]3 years ago
3 0
90+90+90+90 is 360
Therefore, the interior angle sum of a rectangle is 360 degrees
Agata [3.3K]3 years ago
3 0

Answer:

Step-by-step explanation:

Step 1: 1 angle 90

4 angle -> 360

You might be interested in
I’m confused on this explain
romanna [79]

Triangles BAD and BCD are congruent by the HL theorem. That is, they have identical length hypotenuses (BD) and one leg is also identical in length to that in the other triangle. (AD ≅ CD)

Since the triangles are congruent, corresponding angles are equal, so ∠CBD = ∠ABD = 28°. The angle you are interested in is the sum of these two angles,

... ∠ABC = 28°+28° = 56°

6 0
3 years ago
-y- 3 (-3y+5) helpppppppp
valentinak56 [21]

Answer:

D = 8y-15

Step-by-step explanation:

-y-9y-15 than combine -y and -9y

so = 8y-15

3 0
3 years ago
Prove the following integration formula:
7nadin3 [17]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

6 0
2 years ago
Read 2 more answers
A storage unit is in the shape of a cube with 8 feet edge lengths what is the surface area of the storage unit
Inessa05 [86]
Cube has 6 faces that are square
area of square=side^2
side=8
SA=6s^2
SA=6(8^2)
SA=6(64)
SA=384 ft^2
4 0
3 years ago
Read 2 more answers
Do you think all rectangles are similar to each other? What about squares?
Dominik [7]

Answer: they are all similar

Step-by-step explanation: they all are the same shape no matter how long or tall they are

5 0
3 years ago
Read 2 more answers
Other questions:
  • Bro. sarah.sue.and Aron will share the cost of buying a flat screen tv
    10·1 answer
  • Expand:<br> 5 ( n - 1)??<br> could you please show working out to.<br> Thanks
    12·1 answer
  • A certain polygon has its vertices at the following points. (4,8), (6,8), (8,7), (8,5), (7,4), (6,4), (4,5) and (3,6),What is th
    9·1 answer
  • 5.28 plus -9 step by step
    10·1 answer
  • A lamp is on sale, and its price is reduced from $80 to $50. What is the percent of decrease?
    10·2 answers
  • Which equation is the equation of the line, in point-slope form, that has a slope of 2 and passes through the point (−8, 1)?
    6·2 answers
  • Sarah mixes ⅓ cup of sugar with ½ cup of cream cheese to make a topping for cupcakes. Sarah uses 3/12 cup of the mixture to top
    9·2 answers
  • Given that a= (4) and b= (2)<br> (7) (4)<br> If
    6·1 answer
  • What is 9970 pounds to the nearest tenth of an ounce?
    8·1 answer
  • Which statements are true of the given function?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!