Answer:
q₀ = 350,740.2885 N/m
Explanation:
Given

σ = 120 MPa = 120*10⁶ Pa

We can see the pic shown in order to understand the question.
We apply
∑MB = 0 (Counterclockwise is the positive rotation direction)
⇒ - Av*L + (q₀*L/2)*(L/3) = 0
⇒ Av = q₀*L/6 (↑)
Then, we apply

Then, we can get the maximum bending moment as follows

then we get

We get the inertia as follows

We use the formula
σ = M*y/I
⇒ M = σ*I/y
where

If M = Mmax, we have

Answer:64.10 Btu/lbm
Explanation:
Work done in an isothermally compressed steady flow device is expressed as
Work done = P₁V₁ In { P₁/ P₂}
Work done=RT In { P₁/ P₂}
where P₁=13 psia
P₂= 80 psia
Temperature =°F Temperature is convert to °R
T(°R) = T(°F) + 459.67
T(°R) = 55°F+ 459.67
=514.67T(°R)
According to the properties of molar gas, gas constant and critical properties table, R which s the gas constant of air is given as 0.06855 Btu/lbm
Work = RT In { P₁/ P₂}
0.06855 x 514.67 In { 13/ 80}
=0.06855 x 514.67 In {0.1625}
= 0.06855 x 514.67 x -1.817
=- 64.10Btu/lbm
The required work therefore for this isothermal compression is 64.10 Btu/lbm
Answer:
nothing much what class r u in
Location of the class depends on satiation
Answer:
Explanation:
Work, U, is equal to the force times the distance:
U = F · r
Force needed to lift the weight, is equal to the weight: F = W = m · g
so:
U = m · g · r
= 20.4kg · 9.81
· 1.50m
= 35.316 
= 35.316 W