Answer:
w ( mass flow rate of air ) = 3.16 kg/s
Explanation:
<u>Determine the mass flow rate of air </u>
mass flow rate of water = 1.5 kg/s
Height at which air enters the cooling tower = 1m
velocity of air entering at 1 m = 20 m/s
Height at which air leaves the cooling tower = 7 m
attached below is a detailed solution of the problem
Answer:
1709.07 ft^3/s
Explanation:
Annual peak streamflow = Log10(Q [ft^3/s] )
mean = 1.835
standard deviation = 0.65
Probability of levee been overtopped in the next 15 years = 1/5
<u>Determine the design flow ins ft^3/s </u>
P₁₅ = 1 - ( q )^15 = 1 - ( 1 - 1/T )^15 = 0.2
∴ T = 67.72 years
Q₁₅ = 1 - 0.2 = 0.8
Applying Lognormal distribution : Zt = mean + ( K₂ * std ) --- ( 1 )
K₂ = 2.054 + ( 67.72 - 50 ) / ( 100 - 50 ) * ( 2.326 - 2.054 )
= 2.1504
back to equation 1
Zt = 1.835 + ( 2.1504 * 0.65 ) = 3.23276
hence:
Log₁₀ ( Qt(ft^3/s) ) = Zt = 3.23276
hence ; Qt = 10^3.23276
= 1709.07 ft^3/s
Answer:
I am pretty confident it is the Employer!
Explanation:
They have the responsibility to provide a safe workplace that is free from serious hazards, according to the General Duty Clause of the OSH Act (OSHA Standards)
I hope this helped you!! :D
Answer:

Explanation:
Given data:
mass = 2.00 kg
slope angle = 38.0
From figure
balancing force
.....1
Balancing torque
......2
for pure rolling


from 1 and 2nd equation







N =normal force 

solving for coefficent of friction we get

Answer:
The correct option is;
Terminate
Explanation:
Termination of the risk is equivalent to elimination of the risk by avoiding the activity that brings about the risk or by using a different process that does not include the risk observed in the previous process option
When the reward far outweigh the risk, it may be decided to terminate or eliminate the risk and miss the reward and also terminate the likelihood of the losses to be incurred.