1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allochka39001 [22]
3 years ago
14

Can a composite number be a multiple of any other number except itself

Mathematics
2 answers:
WARRIOR [948]3 years ago
8 0
Yes this is so because 2is composite, but it is a multiple of 4,6,8,10...
Artist 52 [7]3 years ago
6 0
Yes it can hope I helped
You might be interested in
Need help omg I’ve been stuck
katrin2010 [14]

Answer:

x = -2.75

Step-by-step explanation:

:D

14 - 3 = 11

11 / -4 = -2.75

7 0
3 years ago
Order them for me please! Thanks :)
Dmitriy789 [7]

Answer:

Answer:

milliliter, centimeter, meter, kilometer

Step-by-step explanation:

3 0
3 years ago
which of the following are the exact same distance from a parabola? A.Locus and Directix B.Axis and vertex C.Directix and Focus
Softa [21]

Answer:

C. Directrix and Focus

Step-by-step explanation:

Given choices are :

A. Locus and Directrix

B. Axis and vertex

C. Directrix and Focus or

D. Vertex and Locus

Now we need to find about which of the above choices are the exact same distance from a parabola.

By definition of parabola, vertex lies at equal distance from directrix and focus.

Hence choice  C. Directrix and Focus  is correct.

6 0
3 years ago
Read 2 more answers
Right answer i will give brainliest
Xelga [282]

Answer:

B and C

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Use the given information to find (a) sin(s+t), (b) tan(s+t), and (c) the quadrant of s+t. cos s = - 12/13 and sin t = 4/5, s an
Anton [14]

Answer:

Part a) sin(s + t) =-\frac{63}{65}    

Part b) tan(s + t) = -\frac{63}{16}

Part c) (s+t) lie on Quadrant IV

Step-by-step explanation:

[Part a) Find sin(s+t)

we know that

sin(s + t) = sin(s) cos(t) + sin(t)cos(s)

step 1

Find sin(s)

sin^{2}(s)+cos^{2}(s)=1

we have

cos(s)=-\frac{12}{13}

substitute

sin^{2}(s)+(-\frac{12}{13})^{2}=1

sin^{2}(s)+(\frac{144}{169})=1

sin^{2}(s)=1-(\frac{144}{169})

sin^{2}(s)=(\frac{25}{169})

sin(s)=\frac{5}{13} ---> is positive because s lie on II Quadrant

step 2

Find cos(t)

sin^{2}(t)+cos^{2}(t)=1

we have

sin(t)=\frac{4}{5}

substitute

(\frac{4}{5})^{2}+cos^{2}(t)=1

(\frac{16}{25})+cos^{2}(t)=1

cos^{2}(t)=1-(\frac{16}{25})

cos^{2}(t)=\frac{9}{25}

cos(t)=-\frac{3}{5} is negative because t lie on II Quadrant

step 3

Find sin(s+t)

sin(s + t) = sin(s) cos(t) + sin(t)cos(s)

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

substitute the values

sin(s + t) = (\frac{5}{13})(-\frac{3}{5}) + (\frac{4}{5})(-\frac{12}{13})

sin(s + t) = -(\frac{15}{65}) -(\frac{48}{65})

sin(s + t) =-\frac{63}{65}

Part b) Find tan(s+t)

we know that

tex]tan(s + t) = (tan(s) + tan(t))/(1 - tan(s)tan(t))[/tex]

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

step 1

Find tan(s)

tan(s)=sin(s)/cos(s)

substitute

tan(s)=(\frac{5}{13})/(-\frac{12}{13})=-\frac{5}{12}

step 2

Find tan(t)

tan(t)=sin(t)/cos(t)

substitute

tan(t)=(\frac{4}{5})/(-\frac{3}{5})=-\frac{4}{3}

step 3

Find tan(s+t)

tan(s + t) = (tan(s) + tan(t))/(1 - tan(s)tan(t))

substitute the values

tan(s + t) = (-\frac{5}{12} -\frac{4}{3})/(1 - (-\frac{5}{12})(-\frac{4}{3}))

tan(s + t) = (-\frac{21}{12})/(1 - \frac{20}{36})

tan(s + t) = (-\frac{21}{12})/(\frac{16}{36})

tan(s + t) = -\frac{63}{16}

Part c) Quadrant of s+t

we know that

sin(s + t) =negative  ----> (s+t) could be in III or IV quadrant

tan(s + t) =negative ----> (s+t) could be in III or IV quadrant

Find the value of cos(s+t)

cos(s+t) = cos(s) cos(t) -sin (s) sin(t)

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

substitute

cos(s+t) = (-\frac{12}{13})(-\frac{3}{5})-(\frac{5}{13})(\frac{4}{5})

cos(s+t) = (\frac{36}{65})-(\frac{20}{65})

cos(s+t) =\frac{16}{65}

we have that

cos(s+t)=positive -----> (s+t) could be in I or IV quadrant

sin(s + t) =negative  ----> (s+t) could be in III or IV quadrant

tan(s + t) =negative ----> (s+t) could be in III or IV quadrant

therefore

(s+t) lie on Quadrant IV

4 0
3 years ago
Other questions:
  • How many radians are contained in the angle AOT in the figure? Round your answer to three decimal places.
    8·2 answers
  • Solve the equation for y <br> -2x+y=11
    6·2 answers
  • What is the next number in this pattern? 1,7,8,15,23,38,61
    7·1 answer
  • HELP PLEASE!!!!!!! I NEED FAST!!
    14·2 answers
  • Find the domain of the function (f/g)(x) where f(x)=√x+1, g(x)=√x-9
    6·1 answer
  • LaTesha and Bernard are playing a game. Their scores for five games are shown in the table below. LaTesha’s and Bernard’s Scores
    8·1 answer
  • DOES ANYONE USE THIS APP? <br>I NEED HELP​
    5·2 answers
  • I need help ASAP! Find the area of the following shape.
    11·1 answer
  • Which graph shows the solution to this system of inequalities?<br> y &lt; 2x + 4<br> y &gt; -X -3
    11·1 answer
  • use headlights between sunset and sunrise and at any time when visibility is less than 500 feet to 1000 feet.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!