Depends on what the base is. You would reference the base dissociation chart for that value.
Sodium fluoride- to brush teeth
Citric acid- orange juice for breakfast
Sodium hydroxide- cleaning agent
Answer:
Se detailed explanation.
Explanation:
Hello,
In this case, since both magnesium and calcium ions are in group IIA, we can review the following similar properties:
- Since both calcium and magnesium are in group IIA they have two valence electrons, it means that the both of them have two electrons at their outer shells.
- They are highly soluble in water when forming ionic bonds with nonmetals such as those belonging to halogens and oxygen's family.
- Calcium has 18 electrons and magnesium 10 which are two less than the total protons (20 and 12 respectively) since the both of them have lost two electrons due their ionized form.
- Their electron configurations are:

It means that the both of them are at the
region since it is the last subshell at which their electrons are.
Best regards.
Explanation:
a) In 1 mole of methane there are 4 moles of hydrogen atom
Atomic mass of 1 mole of hydrogen atom = 1 g
Mass of hydrogen in 1 mole of methane = 4 × 1 g = 4 g
b) In 1 mole of chloroform there are 1 mole of hydrogen atom
Atomic mass of 1 mole of hydrogen atom = 1 g
Mass of hydrogen in 1 mole of methane = 1× 1 g = 1 g
c) In 1 mole of
there are 10 moles of hydrogen atom
Atomic mass of 1 mole of hydrogen atom = 1 g
Mass of hydrogen in 1 mole of
= 10 × 1 g = 10 g
d)In 1 mole of
there are 12 moles of hydrogen atom.

Atomic mass of 1 mole of hydrogen atom = 1 g
Mass of hydrogen in 1 mole of
= 12 × 1 g = 12 g
Answer:
14.8 × 10²³ molecules
Explanation:
Given data:
Mass of sulfuric acid = 240 g
Number of molecules = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
Number of moles of sulfuric acid
<em>Number of moles = mass/ molar mass</em>
Number of moles = 240 g/ 98 g/mol
Number of moles = 2.45 mol
Number of molecules:
1 mole = 6.022 × 10²³ molecules
2.45 × 6.022 × 10²³ molecules
14.8 × 10²³ molecules