Answer: fourth option, 10.8 kJ
Explanation:
The <em>heat of fusion</em>, also named latent heat of fusion, is the amount of heat energy required to change the state of a substance from solid to liquid (at constant pressure).
The data of the <em>heat of fusions</em> of the substances are reported in tables and they can be shown either per mole or per gram of substance.
In this case we have that the<em> heat of fusion for water </em>is reported per mole: <em>6.02 kJ/mole</em>.
The formula to calculate <em>how many kJ of heat (total heat) are needed to completely melt 32.3 g of water, given that the water is at its melting point</em> is:
- Heat = number of moles × heat of fusion
The calculations are:
- number of moles = mass / molar mass
number of moles = 32.3 g / 18.015 g/mol = 1.79 mol
- Heat = 1.79 mol × 6.02 kJ / mol = 10.8 kJ ← answer
Answer: 40.1%
Explanation: The mass of calcium in this compound is equal to 40.1 grams because there's one atom of calcium present and calcium has an atomic mass of 40.1 . The molar mass of the compound is 100.1 grams. Using the handy equation above, we get: Mass percent = 40.1 g Ca⁄100.1 g CaCO3 × 100% = 40.1% Ca.
Answer:
★ Molecular geometry is described by VSEPR theory, which basically states that electron pairs around a central atom will repel each other, and get as far apart as possible, in three dimensions.
Explanation:
Hope you have a great day :)
Answer:
a )Li
b)O
c)F
Explanation:
a) Li-1s^2 2s^1
F-1s^2 2s^2 2p^5
it is easy to pull out e- from 2p orbit than 2s because 2s orbit is close to nucleus.Therefore Li have high ionisation enthalpy
b)oxygen ion is larger than Na because o have fewer proton
c)F because it requires only 1e to achieve stable noble gas configuration.Therefore to achieve stable nobke gas electonic configuration it accept 1e.