The three steps involve;
Step 1: Separation/expansion of the solute particles
Step 2: Separation/expansion of the solvent particles
Step 3; Combining the solute and solvent particles
The first two steps are usually endothermic. Step 3, nonetheless, can be either exothermic or endothermic and is significant in determining whether the dissolving process will be endothermic or exothermic.
To make a first step you have to know the balanced form for neutralization formula:

According to this, you can <span>calculate what you are being asked :</span>

Then we have :

Hope everything is clear, here is the exact answer you need :
Answer:
Partial pressure of
in the gas was 733 torr and mass of
in the sample was 2.12 g.
Explanation:
a) Total pressure of gas = (partial pressure of water vapour)+(partial pressure of
)
Here partial pressure of water vapour is 21 torr and total pressure of gas is 754 torr.
So, partial pressure of
= (total pressure of gas)-(partial pressure of water vapour) = (754 torr) - (21 torr) = 733 torr
b) Lets assume that
behaves ideally. Hence-
PV=nRT
where P is pressure of
, V is volume of
, n is number of moles of
, R is gas constant and T is temperature in kelvin
here P = 733 torr =
= 0.9646 atm
V = 0.65 L, R = 0.082 L.atm/(mol.K), T=(273+22)K = 295 K
So, 
= 
= 0.0259 moles
As 3 moles of
are produced from 2 moles of
therefore 0.0259 moles of
are produced from
moles or 0.0173 moles of
.
Molar mass of
= 122.55 g
So mass of
in sample = 
= 2.12 g
The chemical formula of baking soda aka sodium bicarbonate is NaHCO3
Here you are! I hope it helps, and also for the ones I put a red ‘x’ it depends on how you round it.