<u>Answer:</u>
For 2: The correct answer is grams of solute per 100 grams of solvent.
For 3: The correct answer is supersaturated.
For 4: the correct answer is the solubility decreases.
<u>Explanation:</u>
Solubility is defined as the property which refers to the ability of the solute that can be dissolved in a solvent. It is defined as the number of grams of solute per 100 grams of solvent.
Unsaturated solution is defined as the solution in which amount of solute that is dissolved in the solvent is less.
Saturated solution is defined as the solution in which no more solute can be dissolved in the given amount of solvent.
Emulsion is defined as the dispersion of one liquid in another liquid in which it is not soluble.
Supersaturated solution is defined as the solution in which solvent contains more amount of solute than the required amount. These solutions help in the process of crystallization.
When a crystal is added to a <u>supersaturated solution</u>, more and more particles come out of the solution and this process is known as crystallization.
According to the Henry's Law
The solubility of the gas in a liquid is directly proportional to the partial pressure of the gas.

With increase in the partial pressure, the solubility of the gas in liquid also increases and vice-versa.
Hence, the correct answer is the solubility decreases.
Answer:
D. 
Explanation:
Hello!
In this case, for the given set of chemical reactions, it is possible to infer that D. is a categorized as redox due to the following:
Since both chlorine and bromine remain as diatomic gases, their oxidation states in such a form is 0, but as anions with lithium cations they have a charge of - according to the following reaction and half-reactions:


Unlike the other reactions whereas no change in the oxidation states is evidenced.
<em>From the above options, the best </em><em>Thermal insulator </em><em>will be a </em><em>Plastic cup.</em>
Option (b);
<u>Explanation</u>
Thermal insulators resist to conduct energy or reduction of heat transfer when objects come across in contact with radiation or higher heat object. To conduct energy we need metal or those materials which contain free electrons in it to move from one metal to another.
Plastic doesn't have metallic character so it will resist the heat up to some threshold. Mostly this material is used in separating two current-conducting material. There are many other examples of thermal insulator such as Rubber, fabrics, paper, wood, wool.
Answer:
384.2 K
Explanation:
First we convert 27 °C to K:
- 27 °C + 273.16 = 300.16 K
With the absolute temperature we can use <em>Charles' law </em>to solve this problem. This law states that at constant pressure:
Where in this case:
We input the data:
300.16 K * 1600 m³ = T₂ * 1250 m³
And solve for T₂:
T₂ = 384.2 K