The answer is 42 grams of NaF are there in 1 mole.
<h3>
What is a mole ?</h3>
A mole is defined as 6.022 × 10²³ atoms, molecules, ions, or other chemical units.
and the molar mass of a substance is defined as the mass of 1 mole of that substance, expressed in grams per mole.
It is equal to the mass of 6.022 × 10²³ atoms, molecules, or formula units of that substance.
Molar Mass , i.e. mass of 1 mole of NaF is sum of molar mass of Na and F
23 + 19
42 grams
Therefore 42 grams of NaF Sodium-fluoride are there in 1 mole.
To know more about mole
brainly.com/question/26416088
#SPJ1
Forming a covalent bond
A covalent bond is formed when two atoms share a pair of electrons. Covalent bonding occurs in most non-metal elements, and in compounds formed between non-metals.
These shared electrons are found in the outer shells of the atoms. Usually each atom contributes one electron to the shared pair of electrons.
The slideshow shows how a covalent bond forms between a hydrogen atom and a chlorine atom, making hydrogen chloride.
Structures of a hydrogen atom and a chlorine atom.
1. A hydrogen atom with one electron and a chlorine atom with 17 electrons
Molecules
Most covalently bonded substances consist of small molecules. A molecule is a group of two or more atoms joined together by covalent bonds. Molecules of the same element or compound always contain the same number of atoms of each element.
The atoms in a molecule are always joined together by a covalent bond. Substances that are made up of ions do not form molecules.
Sizes of atoms and simple molecules
A small molecule contains only a few atoms, so atoms and small molecules have a similar range of sizes. They are very small, typically around 0.1 nm or 1 × 10-10 m across.
Ps please mark me as brainiest please
Answer:
both are the types of mixture and both are impure substances that donot have fixed composition and the composition of constituents is not uniform
Answer:
A. The balloons will increase to twice their original volume.
Explanation:
Boyle's law states that the pressure exerted on a gas is inversely proportional to the volume occupied by the gas at constant temperature. That is:
P ∝ 1/V
P = k/V
PV = k (constant)
P = pressure, V = volume.

Let the initial pressure of the balloon be P, i.e.
, initial volume be V, i.e.
. The pressure is then halved, i.e.

Therefore the balloon volume will increase to twice their original volume.