The constant is the temperature of the air that the plants get.
The independent variable is the thing that YOU control. That's the amount of sunlight each plant gets.
The <em>dependent variable</em> is anything that's caused by changes in the independent variable. That's the growth of the plants.
Answer : I hope this helps !
The Effort Force is the force applied to a machine. Work input is the work done on a machine. The work input of a machine is equal to the effort force times the distance over which the effort force is exerted.
Answer:
460.52 s
Explanation:
Since the instantaneous rate of change of the voltage is proportional to the voltage in the condenser, we have that
dV/dt ∝ V
dV/dt = kV
separating the variables, we have
dV/V = kdt
integrating both sides, we have
∫dV/V = ∫kdt
㏑(V/V₀) = kt
V/V₀ = 
Since the instantaneous rate of change of the voltage is -0.01 of the voltage dV/dt = -0.01V
Since dV/dt = kV
-0.01V = kV
k = -0.01
So, V/V₀ = 
V = V₀
Given that the voltage decreases by 90 %, we have that the remaining voltage (100 % - 90%)V₀ = 10%V₀ = 0.1V₀
So, V = 0.1V₀
Thus
V = V₀
0.1V₀ = V₀
0.1V₀/V₀ = 
0.1 = 
to find the time, t it takes the voltage to decrease by 90%, we taking natural logarithm of both sides, we have
㏑(0.01) = -0.01t
So, t = ㏑(0.01)/-0.01
t = -4.6052/-0.01
t = 460.52 s
Answer:
.
Explanation:
Let
denote the absolute temperature of this object.
Calculate the value of
before and after heating:
.
.
By the Stefan-Boltzmann Law, the energy that this object emits (over all frequencies) would be proportional to
.
Ratio between the absolute temperature of this object before and after heating:
.
Therefore, by the Stefan-Boltzmann Law, the ratio between the energy that this object emits before and after heating would be:
.
Answer:
(A) -2940 J
(B) 392 J
(C) 212.33 N
Explanation:
mass of bear (m) = 25 kg
height of the pole (h) = 12 m
speed (v) = 5.6 m/s
acceleration due to gravity (g) = 9.8 m/s
(A) change in gravitational potential energy (ΔU) = mg(height at the bottom- height at the top)
height at the bottom = 0
= 25 x 9.8 x (0-12) = -2940 J
(B) kinetic energy of the Bear (KE) =
=
= 392 J
(C) average frictional force = 
- change in KE (ΔKE) = initial KE - final KE
- ΔKE =
-
- when the Bear reaches the bottom of the pole, the final velocity (Vf) is 0, therefore the change in kinetic energy becomes ΔKE =
- 0 = 392 J
\frac{-(ΔKE+ΔU)}{h}[/tex] =
=
= 212.33 N