Answer:
Effect of gravity is equal on both solids and liquids.
Explanation:
gravity is independent of the state of matter.
Answer:
(a) 
(b) 142
(c) 
(d) 96.8 mph
(e) 0.426 s
(f) 0.061 rad
Explanation:
Velocity is a time-derivative of position.
(a) 

(b) Since
is independent of
, it follows it was constant throughout. Hence, at any point or time, the horizontal velocity is 142.
(c) 

(d) When it passes the home plate, the ball has travelled 60.5 ft (from the question). This is horizontal, so it is equivalent to
.

.
In this time, the vertical velocity,
is

The speed of the ball at thus point is
ft/s
To convert this to mph, we multiply the factor 3600/5280

(e) The time has been determined from (d) above.

(f) This angle is given by

(Note here we are considering the acute angle so we ignore the negative sign)
In radians, this is

Answer:
2.5 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity.
The S.I unit of acceleration is m/s²
For circular motion, the expression for acceleration is given as,
a = ω²r ................ Equation 1
Where a = acceleration of the particle, ω = angular speed of the particle, r = radius of the circular path.
Given: ω = 5 rev/s = 31.42 rad/s, r = 0.10 m.
Substitute into equation 1
a = 5²(0.10)
a = 25(0.10)
a = 2.5 m/s²
Hence the acceleration of the particle = 2.5 m/s²
Hence, none of the option is correct
The change in pitch of a train's horn as it passes while you are standing still can be explained by the Doppler effect. The correct option among all the options given in the question is option "A". When the sound source from the horn of the train comes closer, the sound seems to come closer each time a sound wave gets emitted. So it comes closer to us in a bunched form. The reverse happens when the train has just passed with each emitted sound going further and further away. The frequency of the sound seems to get lower as the train moves further away.
So, the time that taken for the astronaut to fall to the surface of the moon is <u>2.5 s.</u>
<h3>Introduction</h3>
Hi ! In this question, I will help you. In this question, you will learn about the fall time of the free fall motion. Free fall is a downward vertical motion without being preceded by an initial velocity. When moving in free fall, the time required can be calculated by the following equation:



With the following condition :
- t = interval of the time (s)
- h = height or any other displacement at vertical line (m)
- g = acceleration of the gravity (m/s²)
<h3>Problem Solving</h3>
We know that :
- h = height = 5.00 m
- g = acceleration of the gravity = 1.6 m/s²
What was asked :
- t = interval of the time = ... s
Step by step :




<h3>Conclusion</h3>
So, the time that taken for the astronaut to fall to the surface of the moon is 2.5 s.
<h3>See More</h3>