Answer:
I dont know this but I have an app for you if your really strangling
Explanation:
its called Qanda. it really good and teachers help you a lot
Answer:
(a) average velocity = 17.6 m/s
(b) when t = 0, v = 0
when t = 4, v = 19.2 m/s
when t = 8, v = 28.8 m/s
(c) after starting from rest, the car will be at rest again in 20 s
Explanation:
Given;
x(t)=bt²−ct³, substitute the given values and the equation will become;
x(t)=3t²−0.1t³
(a)average velocity = total distance / total time
total distance, x(t) = 3t²−0.1t³
x(8) = 3t²−0.1t³
X(8) = 3(8)² - 0.1(8)³
X(8) = 140.8 m
total time = 8 s
average velocity = 140.8 / 8
average velocity = 17.6 m/s
(b) instantaneous velocity = dx / dt
dx / dt = 6t - 0.3t²
when t = 0
v = 0
when t = 4 s
v = 6(4) - 0.3(4²) = 19.2 m/s
when t = 8 s
v = 6(8) - 0.3(8²) = 28.8 m/s
(c) the velocity is zero at dx / dt = 0
6t - 0.3t² = 0
t(6 - 0.3t) = 0
t = 0 or 6 - 0.3t = 0
t = 0 or 0.3t = 6
t = 0 or t = 6 / 0.3
t= 0 or t = 20 s
After starting from rest, the car will be at rest again in 20 s
Buoyancy is the upward force on an object produced by the surrounding fluid (could be a liquid or a gas) in which it is fully or partially immersed, due to the pressure difference of the fluid between the top and bottom of the object. The net upward buoyancy force is equal to the magnitude of the weight of fluid displaced by the body. This force enables the object to float or at least to seem lighter.
A wave front has the form of a surface of a sphere
Answer : The equilibrium concentration of T(g) is 0.5 M
Solution :
Let us assume that the equilibrium reaction be:
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[Z][X]^2}{[R][T]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BZ%5D%5BX%5D%5E2%7D%7B%5BR%5D%5BT%5D%5E2%7D)
where,
= equilibrium constant = 16
[Z] = concentration of Z at equilibrium = 2.0 M
[R] = concentration of R at equilibrium = 2.0 M
[X] = concentration of X at equilibrium = 2.0 M
[T] = concentration of T at equilibrium = ?
Now put all the given values in the above expression, we get:
![16=\frac{(2.0)\times (2.0)^2}{(2.0)\times [T]^2}](https://tex.z-dn.net/?f=16%3D%5Cfrac%7B%282.0%29%5Ctimes%20%282.0%29%5E2%7D%7B%282.0%29%5Ctimes%20%5BT%5D%5E2%7D)
![[T]=0.5M](https://tex.z-dn.net/?f=%5BT%5D%3D0.5M)
Therefore, the equilibrium concentration of T(g) is 0.5 M