1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
2 years ago
12

A motorcycle is following a car that is traveling at a constant speed on a straight highway. Initially, the car and the motorcyc

le are both traveling at the same speed of 23.0 m/s, and the distance between them is 58.0 m. After t1 = 5.00 s, the motorcycle starts to accelerate at a rate of 8.00 m/s^2.
(a) The motorcycle catches up with the car at some time t2. How long does it take from the moment when the motorcycle starts to accelerate until it catches up with the car? In other words, find t2−t1.
(b) How far does the motorcycle travel from the moment it starts to accelerate (at time t1) until it catches up with the car (at time t2)? Should you need to use an answer from a previous part, make sure you use the unrounded value.
Physics
1 answer:
Artist 52 [7]2 years ago
5 0

Answer:

(a) 3.807 s

(b) 145.581 m

Explanation:

Let Δt = t2 - t1 be the time it takes from the moment when the motorcycle starts to accelerate until it catches up with the car. We know that before the acceleration, both vehicles are travelling at a constant speed. So they would maintain a distance of 58 m prior to the acceleration.

The distance traveled by car after Δt (seconds) at v_c = 23m/s speed is

s_c = \Delta t v_c = 23\Delta t

The distance traveled by the motorcycle after Δt (seconds) at m_m = 23 m/s speed and acceleration of a = 8 m/s2 is

s_m = \Delta t v_m + a\Delta t^2/2

s_m = 23\Delta t + 8\Delta t^2/2 = 23 \Delta t + 4 \Delta t^2

We know that the motorcycle catches up to the car after Δt, so it must have covered the distance that the car travels, plus their initial distance:

s_m = s_c + 58

23 \Delta t + 4 \Delta t^2 = 23\Delta t + 58

4 \Delta t^2 = 58

\Delta t^2 = 14.5

\Delta t = \sqrt{14.5} = 3.807s

(b)

s_m = 23 \Delta t + 4 \Delta t^2

s_m = 23*3.807 + 58 = 145.581 m

You might be interested in
When work is done and a force is transferred which choice describes the movements of the object?
Arisa [49]
When work is done and a force is transferred an object must move
3 0
3 years ago
HELP PLS MARKING BRANLIST 100 pts TAKING TEST RN
AlladinOne [14]

Answer:

15 m/s^2 The first thing to calculate is the difference between the final and initial velocities. So 180 m/s - 120 m/s = 60 m/s So the plane changed velocity by a total of 60 m/s. Now divide that change in velocity by the amount of time taken to cause that change in velocity, giving 60 m/s / 4.0 s = 15.0 m/s^2 Since you only have 2 significaant figures, round the result to 2 significant figures giving 15 m/s^2

Explanation:

8 0
3 years ago
One uniform ladder of mass 30 kg and 10 m long rests against a frictionless vertical wall and makes an angle of 60o with the flo
yuradex [85]

Answer:

   μ = 0.37

Explanation:

For this exercise we must use the translational and rotational equilibrium equations.

We set our reference system at the highest point of the ladder where it touches the vertical wall. We assume that counterclockwise rotation is positive

let's write the rotational equilibrium

           W₁  x/2 + W₂ x₂ - fr y = 0

where W₁ is the weight of the mass ladder m₁ = 30kg, W₂ is the weight of the man 700 N, let's use trigonometry to find the distances

             cos 60 = x / L

where L is the length of the ladder

              x = L cos 60

            sin 60 = y / L

           y = L sin60

the horizontal distance of man is

            cos 60 = x2 / 7.0

            x2 = 7 cos 60

we substitute

         m₁ g L cos 60/2 + W₂ 7 cos 60 - fr L sin60 = 0

         fr = (m1 g L cos 60/2 + W2 7 cos 60) / L sin 60

let's calculate

         fr = (30 9.8 10 cos 60 2 + 700 7 cos 60) / (10 sin 60)

         fr = (735 + 2450) / 8.66

         fr = 367.78 N

the friction force has the expression

         fr = μ N

write the translational equilibrium equation

         N - W₁ -W₂ = 0

         N = m₁ g + W₂

         N = 30 9.8 + 700

         N = 994 N

we clear the friction force from the eucacion

        μ = fr / N

        μ = 367.78 / 994

        μ = 0.37

3 0
3 years ago
In a two-body collision, if the momentum of the system is conserved, then which of the
lakkis [162]

Answer:

c) may also be conserved

Explanation:

Momentum is conserved  in both elastic and inelastic type of collisions.

But the differences is that:

In an ELASTIC type of collisions, KINETIC ENERGY IS ALSO CONSERVED.

whereas, In an INELASTIC type of collision, KINETIC ENERGY IS NOT CONSERVED.

So unless until type of collision is specified, we can not say anything about the conservation of kinetic energy after collision.

Hence, may also be conserved is the appropriate option here.

5 0
3 years ago
A(n) 12500 lb railroad car traveling at 7.8 ft/s couples with a stationary car of 7430 lb. The acceleration of gravity is 32 ft/
navik [9.2K]

To solve this problem we will apply the concepts related to the conservation of momentum. That is, the final momentum must be the same final momentum. And in each state, the momentum will be the sum of the product between the mass and the velocity of each object, then

\text{Initial Momentum} = \text{Final Momentum}

m_1u_1 +m_2u_2 = m_1v_1+m_2v_2

Here,

m_{1,2}= Mass of each object

u_{1,2}= Initial velocity of each object

v_{1,2}= Final velocity of each object

When they position the final velocities of the bodies it is the same and the car is stationary then,

m_2u_2 = (m_1+m_2)v_f

Rearranging to find the final velocity

v_f = \frac{m_2u_2}{ (m_1+m_2)}

v_f = \frac{ 12500*7.8}{ 12500+7430}

v_f = 4.8921ft/s

The expression for the impulse received by the first car is

I = m_1 (v-u)

I = \frac{W}{g} (v-u)

Replacing,

I = \frac{12500}{32.2}(4.89-7.8)

I = -1129.65lb\cdot s

The negative sign show the opposite direction.

7 0
2 years ago
Other questions:
  • When you place your feet near the fireplace and they become warm, what type of energy conversion occurs?
    8·2 answers
  • The risk of _______ injury increases with the total amount of physical activity. A. cardiovascular B. musculoskeletal C. cogniti
    9·1 answer
  • What is the force that opposes the movement of an object through water??
    5·2 answers
  • Three people pull simultaneously on a stubborn donkey. Jack pulls directly ahead of the donkey with a force of 61.3 N, Jill pull
    15·1 answer
  • N what way are all sound waves and light waves similar?
    6·1 answer
  • What is the speed of light?
    13·2 answers
  • A nonconducting solid sphere of radius 8.40 cm has a uniform volume charge density. The magnitude of the electric field at 16.8
    8·1 answer
  • How can you show positive body languages with your mouth
    7·1 answer
  • Hello boys and girls plz help me with this question ASAP <br><br> Thank you so much
    9·1 answer
  • A plane accelerates to a velocity of 240 m/s in 11 s by which time it had traveled 1,400 m down the runway what were it average
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!