A motorcycle is following a car that is traveling at a constant speed on a straight highway. Initially, the car and the motorcyc
le are both traveling at the same speed of 23.0 m/s, and the distance between them is 58.0 m. After t1 = 5.00 s, the motorcycle starts to accelerate at a rate of 8.00 m/s^2. (a) The motorcycle catches up with the car at some time t2. How long does it take from the moment when the motorcycle starts to accelerate until it catches up with the car? In other words, find t2−t1.
(b) How far does the motorcycle travel from the moment it starts to accelerate (at time t1) until it catches up with the car (at time t2)? Should you need to use an answer from a previous part, make sure you use the unrounded value.
Let Δt = t2 - t1 be the time it takes from the moment when the motorcycle starts to accelerate until it catches up with the car. We know that before the acceleration, both vehicles are travelling at a constant speed. So they would maintain a distance of 58 m prior to the acceleration.
The distance traveled by car after Δt (seconds) at speed is
The distance traveled by the motorcycle after Δt (seconds) at speed and acceleration of a = 8 m/s2 is
We know that the motorcycle catches up to the car after Δt, so it must have covered the distance that the car travels, plus their initial distance:
Answer:It shows the size of the range of the moisture contents at which the soil remains plastic. In general, the plasticity index depends only on the amount of clay present. It indicates the fineness of the soil and its capacity to change shape without altering its volume.
The answer is weak.
The interaction of nature that will depend on the distance through the
way it acts and involved in beta decay is the weak interaction or the weak
force. This interaction is the responsible for radioactive decay which also
plays a significant role in nuclear fission.
Answer: The ray that passes through the focal point on the way to the lens will refract and travel parallel to the principal axis. ... All three rays should intersect at exactly the same point.
Explanation: Once these incident rays strike the lens, refract them according to the three rules of refraction for converging lenses.