Answer:
A
C
D
B
Explanation.
At point A The body is at rest so k.E is zero but the height is maximum so that p.E is max.
Answer:
0.339 kgm²
Explanation:
We know the period of this pendulum, T = 2π√(I/mgh) where I = moment of inertia of the object about the pivot axis, m = mass of object = 2.15 kg, g = acceleration due to gravity = 9.8 m/s² and h = distance of center of mass of object from pivot point = 0.163 m.
Since T = 2π√(I/mgh), making I subject of the formula, we have
I = mghT²/4π²
Now since it takes 241 s to complete 113 cycles, then it takes 241 s/113 cycles to complete one cycle.
So, T = 241 s/113 = 2.133 s
So, Substituting the values of the variables into I, we have
I = mghT²/4π²
I = 2.15 kg × 9.8 m/s² × 0.163 m × (2.133 s)²/4π²
I = 15.63/4π² kgm²
I = 0.396 kgm²
Now from the parallel axis theorem, I = I' + mh² where I' = moment of inertia of object with respect to its center of mass about an axis parallel to the pivot axis
I' = I - mh²
I' = 0.396 kgm² - 2.15 kg × (0.163 m)²
I' = 0.396 kgm² - 0.057 kgm²
I' = 0.339 kgm²
Answer:

Explanation:
The situation can be described by the Principle of Energy Conservation and the Work-Energy Theorem:

The work done on the ball due to drag is:


![W_{drag} = (0.599\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot (2.18\,m-3.10\,m)+\frac{1}{2}\cdot (0.599\,kg)\cdot [(7.05\,\frac{m}{s} )^{2}-(4.19\,\frac{m}{s} )^{2}]](https://tex.z-dn.net/?f=W_%7Bdrag%7D%20%3D%20%280.599%5C%2Ckg%29%5Ccdot%20%289.807%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%29%5Ccdot%20%282.18%5C%2Cm-3.10%5C%2Cm%29%2B%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%280.599%5C%2Ckg%29%5Ccdot%20%5B%287.05%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D-%284.19%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%5D)
