The suggestion is to prevent a puddle of the liquid present in the sample from forming or from it leaking on to the surface on which it is placed. For example, if precipitates of a solid are removed from water and then placed on filter paper to dry, the water will soak into the filter paper and then leak on to the counter on which it is placed. If this precipitate were placed in a watch glass or weighing paper, the water would only evaporate and would not contaminate the sample.
Refer to the attachment for answer.
SOME EXTRA INFORMATION:
Bromo is used for Bromine (Br)
Chloro is used for Chlorine(Cl)
'ene' represents double bond between carbon atoms.
'ol' is used for alcohol
HOPE IT IS USEFUL
Answer: Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other. Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behavior of real gases. The term ideal gas refers to a hypothetical gas composed of molecules which follow a few rules:
Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container. [What is an elastic collision?]
Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.
If this sounds too ideal to be true, you're right. There are no gases that are exactly ideal, but there are plenty of gases that are close enough that the concept of an ideal gas is an extremely useful approximation for many situations. In fact, for temperatures near room temperature and pressures near atmospheric pressure, many of the gases we care about are very nearly ideal.
If the pressure of the gas is too large (e.g. hundreds of times larger than atmospheric pressure), or the temperature is too low (e.g.
−
200
C
−200 Cminus, 200, start text, space, C, end text) there can be significant deviations from the ideal gas law.
Explanation:
Answer:
58.94 mL
Explanation:
V1 = 48.3 mL V2 = v mL
T1 = 22 degree celsius OR 295 k T2 = 87 degree celsius OR 360 k
We will use the gas equation:
PV = nRT
Since the Pressure (p) , number of moles (n) and the universal gas constant(R) are all constants in this given scenario,
we can say that
V / T = k , (where k is a constant)
Since this is the first case,
V1 / T1 = k --------------------(1)
For case 2:
Since we have the same constants, the equation will be the same
V / T = k (where k is the same constant from before)
V2 / T2 = k (Since this is the second case) ------------------(2)
From (1) and (2):
V1 / T1 = V2 / T2
Now, replacing the variables with the given values
48.3 / 295 = v / 360
v = 48.3*360 / 295
v = 58.94 mL
Therefore, the final volume of the gas is 58.94 mL
Answer: hello attached below is the complete question
answer :
attached below
Explanation:
Diagram of the all the observed products are attached below
note: through radical mechanism The free radicals are stabilized by resonance
Attached below